Mon, 17 Oct 2016

15:45 - 16:45
L6

Physics in the homotopy category of L-infinity algebras

John Huerta
(UC Riverside)
Abstract


 In this introduction for topologists, we explain the role that extensions of L-infinity algebras by taking homotopy fibers plays in physics. This first appeared with the work of physicists D'Auria and Fre in 1982, but is beautifully captured by the "brane bouquet" of Fiorenza, Sati and Schreiber which shows how physical objects such as "strings", "D-branes" and "M-branes" can be classified by taking successive homotopy fibers of an especially simple L-infinity algebra called the "supertranslation algebra". We then conclude by describing our joint work with Schreiber where we build the brane bouquet out of the homotopy theory of an even simpler L-infinity algebra called the superpoint.

Mon, 24 Feb 2014

15:30 - 16:30

Operads and the Tree of Life

John Baez
(UC Riverside)
Abstract

Trees are not just combinatorial structures: they are also

biological structures, both in the obvious way but also in the

study of evolution. Starting from DNA samples from living

species, biologists use increasingly sophisticated mathematical

techniques to reconstruct the most likely “phylogenetic tree”

describing how these species evolved from earlier ones. In their

work on this subject, they have encountered an interesting

example of an operad, which is obtained by applying a variant of

the Boardmann–Vogt “W construction” to the operad for

commutative monoids. The operations in this operad are labelled

trees of a certain sort, and it plays a universal role in the

study of stochastic processes that involve branching. It also

shows up in tropical algebra. This talk is based on work in

progress with Nina Otter [www.fair-fish.ch].

Subscribe to UC Riverside