Tue, 27 Oct 2020

15:30 - 16:30
Virtual

Delocalization transition for critical Erdös-Rényi graphs

Antti Knowles
(Université de Genève)
Further Information

Further Information: 

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

We analyse the eigenvectors of the adjacency matrix of a critical Erdös-Rényi graph G(N,d/N), where d is of order \log N. We show that its spectrum splits into two phases: a delocalized phase in the middle of the spectrum, where the eigenvectors are completely delocalized, and a semilocalized phase near the edges of the spectrum, where the eigenvectors are essentially localized on a small number of vertices. In the semilocalized phase the mass of an eigenvector is concentrated in a small number of disjoint balls centred around resonant vertices, in each of which it is a radial exponentially decaying function. The transition between the phases is sharp and is manifested in a discontinuity in the localization exponents of the eigenvectors. Joint work with Johannes Alt and Raphael Ducatez.

Fri, 31 Jan 2020

12:00 - 13:00
L4

Geometric methods on low-rank matrix and tensor manifolds

Bart Vandereycken
(Université de Genève)
Abstract

I will present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors. Based on joint work with André Uschmajew (MPI MiS Leipzig).

Mon, 09 Nov 2009
15:45
Eagle House

TBA

Stanislav Smirnov
(Université de Genève)
Subscribe to Université de Genève