Wed, 12 Oct 2016
15:00
L5

Nearly Sparse Linear Algebra and Discrete Logarithm Problem

Cécile Pierrot
(Université Pierre et Marie Curie - Paris VI)
Abstract

Linear algebra is a widely used tool both in mathematics and computer science, and cryptography is no exception to this rule. Yet, it introduces some particularities, such as dealing with linear systems that are often sparse, or, in other words, linear systems inside which a lot of coefficients are equal to zero. We propose to enlarge this notion to nearly sparse matrices, caracterized by the concatenation of a sparse matrix and some dense columns, and to design an algorithm to solve this kind of problems. Motivated by discrete logarithms computations on medium and high caracteristic finite fields, the Nearly Sparse Linear Algebra briges the gap between classical dense linear algebra problems and sparse linear algebra ones, for which specific methods have already been established. Our algorithm particularly applies on one of the three phases of NFS (Number Field Sieve) which precisely consists in finding a non trivial element of the kernel of a nearly sparse matrix.

Wed, 27 Apr 2011
14:00
Gibson 1st Floor SR

Isoperimetric inequalities and cavity interactions in nonlinear elasticity

Duvan Henao
(Université Pierre et Marie Curie - Paris VI)
Abstract

We consider the problem of cavitation in nonlinear elasticity, or the formation of macroscopic cavities in elastic materials from microscopic defects, when subjected to large tension at the boundary.

The main goal is to determine the optimal locations where the body prefers the cavities to open, the preferred number of cavities, their optimal sizes, and their optimal shapes. To this aim it is necessary to analyze the elastic energy of an incompressible deformation creating multiple cavities, in a way that accounts for the interaction between the cavitation singularities. Based on the quantitative version of the isoperimetric inequality, as well as on new explicit constructions of incompressible deformations creating cavities of different shapes and sizes, we provide energy estimates showing that, for certain loading conditions, there are only the following possibilities:

  • only one cavity is created, and if the loading is isotropic then it is created at the centre
  • multiple cavities are created, they are spherical, and the singularities are well separated
  • there are multiple cavities, but they act as a single spherical cavity, they are considerably distorted, and the distance between the cavitation singularities must be of the same order as the size of the initial defects contained in the domain.

In the latter case, the formation of thin structures between the cavities is observed, reminiscent of the initiation of ductile fracture by void coalesence.

This is joint work with Sylvia Serfaty (LJLL, Univ. Paris VI).

Subscribe to Université Pierre et Marie Curie - Paris VI