Thu, 22 Feb 2024
16:00
Lecture Room 4

Tangent spaces of Schubert varieties

Rong Zhou
(University of Cambridge)
Abstract

Schubert varieties in (twisted) affine Grassmannians and their singularities are of interest to arithmetic geometers because they model the étale local structure of the special fiber of Shimura varieties. In this talk, I will discuss a proof of a conjecture of Haines-Richarz classifying the smooth locus of Schubert varieties, generalizing a classical result of Evens-Mirkovic. The main input is to obtain a lower bound for the tangent space at a point of the Schubert variety which arises from considering certain smooth curves passing through it. In the second part of the talk, I will explain how in many cases, we can prove this bound is actually sharp, and discuss some applications to Shimura varieties. This is based on joint work with Pappas and Kisin-Pappas.

Thu, 08 Feb 2024

12:00 - 13:00
L3

Ocean dynamics on the margin of rotational control

John R Taylor
(University of Cambridge)
Further Information

Professor Taylor's research focuses on the fluid dynamics of the ocean. He is particularly interested in ocean turbulence and mixing, ocean fronts and the surface boundary layer, and the impact of turbulence on micro-organisms. Recent work has uncovered a fascinating and poorly-understood collection of processes occurring at relatively small scales (<O(10km)) where the vertical motion is strong but stratification and the Earth's rotation are important factors. Since these motions are too small to be directly resolved by global ocean and climate models, understanding their impact on the structure and dynamics of the ocean is one of the most pressing topics in physical oceanography. Currently, he is studying the dynamics of upper ocean fronts, the turbulent boundary layer beneath melting ice shelves, stratified turbulence, and the influence of physical processes on biogeochemical dynamics. Please see his homepage here for more information. https://www.damtp.cam.ac.uk/person/jrt51 

Abstract

Global scale ocean currents are strongly constrained by the Earth’s rotation, while this effect is generally negligible at small scales. In between, motions with scales from 1-10km are marginally affected by the Earth’s rotation. These intermediate scales, collectively termed the ocean submesoscale, have been hidden from view until recent years. Evidence from field measurements, numerical models, and satellite data have shown that submesoscales play a particularly important role in the upper ocean where they help to control the transport of material between the ocean surface and interior. In this talk I will review some recent work on submesoscale dynamics and their influence on biogeochemistry and accumulation of microplastics in the surface waters.

 

 

Tue, 20 Feb 2024

14:00 - 15:00
L5

Faithfulness of highest-weight modules for Iwasawa algebras

Stephen Mann
(University of Cambridge)
Abstract

Iwasawa algebras are completions of group algebras for p-adic Lie groups, and have applications for studying the representations of these groups. It is an ongoing project to study the prime ideals, and more generally the two-sided ideals, of these algebras.

In the case of Iwasawa algebras corresponding to a simple Lie algebra with a Chevalley basis, we aim to prove that all non-zero two-sided ideals have finite codimension. To prove this, it is sufficient to show faithfulness of modules arising from highest-weight modules for the corresponding Lie algebra.

I have proved two main results in this direction: firstly, I proved the faithfulness of generalised Verma modules over the Iwasawa algebra. Secondly, I proved the faithfulness of all infinite-dimensional highest-weight modules in the case where the Lie algebra has type A. In this talk, I will outline the methods I used to prove these cases.

Tue, 30 Jan 2024

14:00 - 15:00
L5

Equivariant vector bundles with connection on the p-adic half-plane

Simon Wadsley
(University of Cambridge)
Abstract

Recent joint work with Konstantin Ardakov has been devoted to classifying equivariant line bundles with flat connection on the Drinfeld p-adic half-plane defined over F, a finite extension of Q_p, and proving that their global sections yield admissible locally analytic representations of GL_2(F) of finite length. In this talk we will discuss this work and invite reflection on how it might be extended to equivariant vector bundles with connection on the p-adic half-plane and, if time permits, to higher dimensional analogues of the half-plane.

Mon, 12 Feb 2024
16:00
L2

Higher descent on elliptic curves

Sven Cats
(University of Cambridge)
Abstract

Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.

Wed, 21 Feb 2024
16:00
L6

Groups Acting Acylindrically on Trees

William Cohen
(University of Cambridge)
Abstract

It was shown by Balasubramanya that any acylindrically hyperbolic group (a natural generalisation of a hyperbolic group) must act acylindrically and non-elementarily on some quasi-tree. It is therefore sensible to ask to what extent this is true for trees, i.e. given an acylindrically hyperbolic group, does it admit a non-elementary acylindrical action on some simplicial tree? In this talk I will introduce the concepts of acylindrically hyperbolic and acylindrically arboreal groups and discuss some particularly interesting examples of acylindrically hyperbolic groups which do and do not act acylindrically on trees.

Tue, 28 Nov 2023

16:00 - 17:00
L1

Euclidean Ramsey Theory

Imre Leader
(University of Cambridge)
Abstract

Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.

Fri, 24 Nov 2023

12:30 - 13:30

Smooth representations and n coherence of Iwasawa algebras in relations

Vincenzo Di Bartolo
(University of Cambridge)
Abstract

In the context of categorical Langlands, there are many ways in which one could define the notion of n-finitely presented smooth representation. We will explore and compare two different definitions, relating them with the notion of n-coherence for the corresponding Iwasawa ring.

Tue, 21 Nov 2023

16:00 - 17:00
C2

On stability of metric spaces and Kalton's property Q

Andras Zsak
(University of Cambridge)
Abstract

There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.

Tue, 13 Jun 2023

14:00 - 15:00
L5

A Ramsey Characterisation of Eventually Periodic Words

Maria Ivan
(University of Cambridge)
Abstract

A factorisation $x=u_1u_2\cdots$ of an infinite word $x$ on alphabet $X$ is called ‘super-monochromatic’, for a given colouring of the finite words $X^{\ast}$ on alphabet $X$, if each word $u_{k_1}u_{k_2}\cdots u_{k_n}$, where $k_1<\cdots<k_n$, is the same colour. A direct application of Hindman’s theorem shows that if $x$ is eventually periodic, then for every finite colouring of $X^{\ast}$, there exist a suffix of $x$ that admits a super-monochromatic factorisation. What about the converse?

In this talk we show that the converse does indeed hold: thus a word $x$ is eventually periodic if and only if for every finite colouring of $X^{\ast}$ there is a suffix of $x$ having a super-monochromatic factorisation. This has been a conjecture in the community for some time. Our main tool is a Ramsey result about alternating sums. This provides a strong link between Ramsey theory and the combinatorics of infinite words.

Joint work with Imre Leader and Luca Q. Zamboni

Subscribe to University of Cambridge