Fri, 08 Nov 2019

15:00 - 16:00
N3.12

Simplicial Mixture Models - Fitting topology to data

James Griffin
(University of Coventry)
Abstract

Lines and planes can be fitted to data by minimising the sum of squared distances from the data to the geometric object.  But what about fitting objects from topology such as simplicial complexes?  I will present a method of fitting topological objects to data using a maximum likelihood approach, generalising the sum of squared distances.  A simplicial mixture model (SMM) is specified by a set of vertex positions and a weighted set of simplices between them.  The fitting process uses the expectation-maximisation (EM) algorithm to iteratively improve the parameters.

Remarkably, if we allow degenerate simplices then any distribution in Euclidean space can be approximated arbitrarily closely using a SMM with only a small number of vertices.  This theorem is proved using a form of kernel density estimation on the n-simplex.

Thu, 19 May 2011

16:00 - 17:00
DH 1st floor SR

Mass and the dependency of research quality on group size

Ralph Kenna
(University of Coventry)
Abstract

The notion of critical mass in research is one that has been around for a long time without proper definition. It has been described as some kind of threshold group size above which research standards significantly improve. However no evidence for such a threshold has been found and critical mass has never been measured -- until now.

We present a new, simple, sociophysical model which explains how research quality depends on research-group structure and in particular on size. Our model predicts that there are, in fact, two critical masses in research, the values of which are discipline dependent. Research quality tends to be linearly dependent on group size, but only up to a limit termed the 'upper critical mass'. The upper critical mass is interpreted as the average maximum number of colleagues with whom a given individual in a research group can meaningfully interact. Once the group exceeds this size, it tends to fragment into sub-groups and research quality no longer improves significantly with increasing size. There is also a

lower critical mass, which small research groups should strive to achieve for stability.

Our theory is tested using empirical data from RAE 2008 on the quantity and quality of research groups, for which critical masses are determined. For pure and applied mathematics, the lower critical mass is about 2 and 6, respectively, while for statistics and physics it is 9 and 13. The upper critical mass, beyond which research quality does not significantly improve with increasing group size, is about twice the lower value.

Subscribe to University of Coventry