Mon, 27 Feb 2017

14:15 - 15:15
L3

The Yang-Mills heat equation on compact manifolds with boundary.

NELIA CHARALAMBOUS
(University of Cyprus)
Abstract

The Yang-Mills heat equation is the gradient flow corresponding to the Yang-Mills functional. It was initially introduced by S. K. Donaldson to study the existence of irreducible Yang-Mills connections on the projective plane. In this talk, we will consider this equation over compact three-manifolds with boundary. It is a nonlinear weakly parabolic equation, but we will see how one can prove long-time existence and uniqueness of solutions by gauge symmetry breaking. We will also demonstrate some strong regularization results for the solution and see how they lead to detailed short-time asymptotic estimates, as well as the long-time convergence of the Wilson loop functions. 

Wed, 15 May 2013
12:00
Gibson 1st Floor SR

Decay of positive waves to hyperbolic systems of balance laws

Cleopatra Christoforou
(University of Cyprus)
Abstract

Historically, decay rates have been used to provide quantitative and qualitative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for approximating procedures and numerical schemes. Qualitative results include the establishment of results on uniqueness and regularity as well as the ability to visualize the waves and their evolution in time.

In this talk, I will present two decay estimates on the positive waves for systems of hyperbolic and genuinely nonlinear balance laws satisfying a dissipative mechanism. The result is obtained by employing the continuity of Glimm-type functionals and the method of generalized characteristics. Using this result on the spreading of rarefaction waves, the rate of convergence for vanishing viscosity approximations to hyperbolic balance laws will also be established. The proof relies on error estimates that measure the interaction of waves using suitable Lyapunov functionals. If time allows, a further application of the recent developments in the theory of balance laws to differential geometry will be addressed.

Subscribe to University of Cyprus