Thu, 17 May 2018

17:00 - 18:00
L1

Michael Atiyah - Numbers are Serious but they are also Fun

Michael Atiyah
(University of Edinburgh)
Abstract

Archimedes, who famously jumped out of his bath shouting "Eureka", also invented $\pi$. 

Euler invented $e$ and had fun with his formula $e^{2\pi i} = 1$

The world is full of important numbers waiting to be invented. Why not have a go ?

Michael Atiyah is one of the world's foremost mathematicians and a pivotal figure in twentieth and twenty-first century mathematics. His lecture will be followed by an interview with Sir John Ball, Sedleian Professor of Natural Philosophy here in Oxford where Michael will talk about his lecture, his work and his life as a mathematician.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 27 Apr 2017

16:00 - 17:00
L3

Using ideas from statistics for analysing (spatio-temporal) stochastic processes

David Schnoerr
(University of Edinburgh)
Abstract

Many systems in nature consist of stochastically interacting agents or particles. Stochastic processes have been widely used to model such systems, yet they are notoriously difficult to analyse. In this talk I will show how ideas from statistics can be used to tackle some challenging problems in the field of stochastic processes.

In the first part, I will consider the problem of inference from experimental data for stochastic reaction-diffusion processes. I will show that multi-time distributions of such processes can be approximated by spatio-temporal Cox processes, a well-studied class of models from computational statistics. The resulting approximation allows us to naturally define an approximate likelihood, which can be efficiently optimised with respect to the kinetic parameters of the model. 

In the second part, we consider more general path properties of a certain class of stochastic processes. Specifically, we consider the problem of computing first-passage times for Markov jump processes, which are used to describe systems where the spatial locations of particles can be ignored.  I will show that this important class of generally intractable problems can be exactly recast in terms of a Bayesian inference problem by introducing auxiliary observations. This leads us to derive an efficient approximation scheme to compute first-passage time distributions by solving a small, closed set of ordinary differential equations.

 

Tue, 28 Feb 2017
14:15
L4

Sklyanin algebras are minimal surfaces

Sue Sierra
(University of Edinburgh)
Abstract

In the ongoing programme to classify noncommutative projective surfaces (connected graded noetherian domains of Gelfand-Kirillov dimension three) a natural question is:  what are the minimal models within a birational class?  It is not even clear a priori what the correct definition is of a minimal model in this context.

We show that a generic Sklyanin algebra (a noncommutative analogue of P^2) satisfies the surprising property that it has no birational connected graded noetherian overrings, and explain why this is a reasonable definition of 'minimal model.' We show also that the noncommutative versions of P^1xP^1 and of the Hirzebruch surface F_2 are minimal.
This is joint work in progress with Dan Rogalski and Toby Stafford.

 

Thu, 28 Apr 2016
16:00
L6

From Sturm, Sylvester, Witt and Wall to the present day

Andrew Ranicki
(University of Edinburgh)
Abstract

The talk will be based on some of the material in the joint survey with Etienne Ghys

"Signatures in algebra, topology and dynamics"

http://arxiv.org/abs/1512.092582

In the 19th century Sturm's theorem on the number of roots of a real polynomial motivated Sylvester to define the signature of a quadratic form. In the 20th century the classification of quadratic forms over algebraic number fields motivated Witt to introduce the "Witt groups" of stable isomorphism classes of quadratic forms over arbitrary fields. Still in the 20th century the study of high-dimensional topological manifolds with nontrivial fundamental group motivated Wall to introduce the "Wall groups" of stable isomorphism classes of quadratic forms over arbitrary rings with involution. In our survey we interpreted Sturm's theorem in terms of the Witt-Wall groups of function fields. The talk will emphasize the common thread running through this developments, namely the notion of the localization of a ring inverting elements. More recently, the Cohn localization of inverting matrices over a noncommutative ring has been applied to topology in the 21st century, in the context of the speaker's algebraic theory of surgery.

 

Mon, 16 Nov 2015

15:00 - 16:00
L2

Magnitudes of compact sets in euclidean spaces: an application of analysis to the theory of enriched categories

Tony Carbery
(University of Edinburgh)
Abstract

Leinster and Willerton have introduced the concept of the magnitude of a metric space, as a special case as that of an enriched category. It is a numerical invariant which is designed to capture the important geometric information about the space, but concrete examples of ts values on compact sets in euclidean space have hitherto been lacking. We discuss progress in some conjectures of Leinster and Willerton.

Wed, 03 Feb 2016
15:00
L4

Computing with Encrypted Data

Elham Kashefi
(University of Edinburgh)
Abstract

The concept of delegated quantum computing is a quantum extension of  
the classical task of computing with encrypted data without decrypting  
them first. Many quantum protocols address this challenge for a  
futuristic quantum client-server setting achieving a wide range of  
security properties. The central challenge of all these protocols to  
be applicable for classical tasks (such as secure multi party  
computation or fully homomorphic encryption) is the requirement of a  
server with a universal quantum computer. By restricting the task to  
classical computation only, we derive a protocol for unconditionally  
secure delegation of classical computation to a remote server that has  
access to basic quantum devices.

Thu, 11 Jun 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Interior Point Methods for Optimal Power Flow Formulations

Andreas Grothey
(University of Edinburgh)
Abstract

Security Constrained Optimal Power Flow is an increasingly important problem for power systems operation both in its own right and as a subproblem for more complex problems such as transmission switching or
unit commitment.

The structure of the problem resembles stochastic programming problems in that one aims to find a cost optimal operation schedule that is feasible for all possible equipment outage scenarios
(contingencies). Due to the presence of power flow constraints (in their "DC" or "AC" version), the resulting problem is a large scale linear or nonlinear programming problem.

However it is known that only a small subset of the contingencies is active at the solution. We show how Interior Point methods can exploit this structure both by simplifying the linear algebra operations as
well as generating necessary contingencies on the fly and integrating them into the algorithm using IPM warmstarting techniques. The final problem solved by this scheme is significantly smaller than the full
contingency constrained problem, resulting in substantial speed gains.

Numerical and theoretical results of our algorithm will be presented.

Tue, 28 Apr 2015

14:00 - 15:00
L3

Newton-type methods for Support Vector Machines and Signal Reconstruction Problems

Kimon Fountoulakis
(University of Edinburgh)
Abstract
Support vector machines and signal reconstruction problems have initiated a resurgence of optimization methods with inexpensive iterations, namely first-order methods. The efficiency of first-order methods has been shown for several well conditioned instances. However, their practical convergence might be slow on ill-conditioned/pathological instances.
 
In this talk we will consider Newton-type methods, which aim to exploit the trade-off between inexpensive iterations and robustness. Two methods will be presented, a robust block coordinate descent method and a primal-dual Newton conjugate gradients method.  We will discuss theoretical properties of the methods and we will present numerical experiments on large scale l1-regularized logistic regression and total variation problems.
Thu, 06 Nov 2014

16:00 - 17:30
L4

Securitization and equilibrium pricing under relative performance concerns

Dr. Gonçalo dos Reis
(University of Edinburgh)
Abstract

We investigate the effects of a finite set of agents interacting socially in an equilibrium pricing mechanism. A derivative written on non-tradable underlyings is introduced to the market and priced in an equilibrium framework by agents who assess risk using convex dynamic risk measures expressed by Backward Stochastic Differential Equations (BSDE). An agent is not only exposed to financial and non-financial risk factors, but he also faces performance concerns with respect to the other agents. The equilibrium analysis leads to systems of fully coupled multi-dimensional quadratic BSDEs.

Within our proposed models we prove the existence and uniqueness of an equilibrium. We show that aggregation of risk measures is possible and that a representative agent exists. We analyze the impact of the problem's parameters in the pricing mechanism, in particular how the agent's concern rates affect prices and risk perception.

Tue, 18 Feb 2014

14:00 - 14:30
L5

Optimal active-set prediction for interior point methods

Yiming Yan
(University of Edinburgh)
Abstract

When applied to an inequality constrained optimization problem, interior point methods generate iterates that belong to the interior of the set determined by the constraints, thus avoiding/ignoring the combinatorial aspect of the solution. This comes at the cost of difficulty in predicting the optimal active constraints that would enable termination.  We propose the use of controlled perturbations to address this challenge. Namely, in the context of linear programming with only nonnegativity constraints as the inequality constraints, we consider perturbing the nonnegativity constraints so as to enlarge the feasible set. Theoretically, we show that if the perturbations are chosen appropriately, the solution of the original problem lies on or close to the central path of the perturbed problem and that a primal-dual path-following algorithm applied to the perturbed problem is able to predict the optimal active-set of the original problem when the duality gap (for the perturbed problem) is not too small. Encouraging preliminary numerical experience is obtained when comparing the perturbed and unperturbed interior point algorithms' active-set predictions for the purpose of cross-over to simplex.

Subscribe to University of Edinburgh