Tue, 27 May 2014

14:00 - 15:00
L4

Morse theory in representation theory and algebraic geometry

Thomas Nevins
(University of Illinois at Urbana Champaign)
Abstract

Hamiltonian reduction arose as a mechanism for reducing complexity of systems in mechanics, but it also provides a tool for constructing complicated but interesting objects from simpler ones. I will illustrate how this works in representation theory and algebraic geometry via examples. I will describe a new structure theory, motivated by Hamiltonian reduction (and in particular the Morse theory that results), for some categories (of D-modules) of interest to representation theorists. I will then explain how this implies a modified form of "hyperkahler Kirwan surjectivity" for the cohomology of certain Hamiltonian reductions. The talk will not assume that members of the audience know the meaning of any of the above-mentioned terms. The talk is based on joint work with K. McGerty.

Tue, 08 Jan 2013

15:45 - 16:45
L3

Refined stable pair invariants on local Calabi-Yau threefolds

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

A refinement of the Pandharipande-Thomas stable pair invariants for local toric Calabi-Yau threefolds is defined by what we call the virtual Bialynicki-Birula decomposition. We propose a product formula for the generating function for the refined stable pair invariants extending the motivic product formula of Morrison, Mozgovoy, Nagao, and Szendroi for local ${\bf P}^1$. I will also describe how the proposed product formula is related to the wall crossing in my first talk. This is joint work with Sheldon Katz and Albrecht Klemm.

Tue, 08 Jan 2013

14:00 - 15:00
L3

On the moduli spaces of stable pairs on the projective plane

Jinwon Choi
(University of Illinois at Urbana Champaign)
Abstract

We study the birational relationship between the moduli spaces of $\alpha$-stable pairs and the moduli space $M(d,1)$ of stable sheaves on ${\bf P}^2$ with Hilbert polynomial $dm+1$. We explicitly relate them by birational morphisms when $d=4$ and $5$, and we describe the blow-up centers geometrically. As a byproduct, we obtain the Poincare polynomials of the moduli space of stable sheaves, or equivalently the refined BPS index. This is joint work with Kiryong Chung.

Tue, 18 Jan 2011

15:45 - 16:45
L3

Wall-crossing and invariants of higher rank stable pairs

Artan Sheshmani
(University of Illinois at Urbana Champaign)
Abstract
We introduce a higher rank analog of Pandharipande-Thomas theory of stable pairs. Given a Calabi-Yau threefold $X$, we define the higher
rank stable pairs (which we call frozen triples) given by the data $(F,\phi)$ where $F$ is a pure coherent sheaf with one dimensional support over $X$ and $\phi:{\mathcal O}^r\rightarrow F$ is a map. We compute the Donaldson-Thomas type invariants associated to the frozen triples using the wall-crossing formula of Joyce-Song and Kontsevich-Soibelman. This work is a sequel to arXiv:1011.6342, where we gave a deformation theoretic construction of a higher rank enumerative theory of stable pairs over a Calabi-Yau threefold, and we computed similar invariants using Graber-Pandharipande virtual localization technique.
Subscribe to University of Illinois at Urbana Champaign