Thu, 04 May 2023
16:00
L5

Optimality of sieves

James Maynard
(University of Oxford)
Abstract

The closest thing we have to a general method for finding primes in sets is to use sieve methods to turn the problem into some other (hopefully easier) arithmetic questions about the set.

Unfortunately this process is still poorly understood - we don’t know ‘how much’ arithmetic information is sufficient to guarantee the existence of primes, and how much is not sufficient. Often arguments are rather ad-hoc.

I’ll talk about work-in-progress with Kevin Ford which shows that many of our common techniques are not optimal and can be refined, and in many cases these new refinements are provably optimal.

Tue, 13 Jun 2023
14:30
L3

Approximating Functions of Sparse Matrices using Matrix-vector Products

Taejun Park
(University of Oxford)
Abstract

The computation of matrix function is an important task appearing in many areas of scientific computing. We propose two algorithms, one for banded matrices and the other for general sparse matrices that approximate f(A) using matrix-vector products only. Our algorithms are inspired by the decay bound for the entries of f(A) when A is banded or sparse. We show its exponential convergence when A is banded or sufficiently sparse and we demonstrate its performance using numerical experiments.

Wed, 14 Jun 2023
16:00
L6

Asymptotic dimension of groups

Panagiotis Tselekidis
(University of Oxford)
Abstract

Asymptotic dimension was introduced by Gromov as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after a paper of Guoliang Yu, which proved the Novikov conjecture for groups with finite asymptotic dimension. Unfortunately, not all finitely generated groups have finite asymptotic dimension. 

In this talk, we will introduce some basic tools to compute the asymptotic dimension of groups. We will also find upper bounds for the asymptotic dimension of a few well-known classes of finitely generated groups, such as hyperbolic groups, and if time permits, we will see why one-relator groups have asymptotic dimension at most two.

Wed, 31 May 2023
16:00
L6

Accessibility, QI-rigidity, and planar graphs

Joseph MacManus
(University of Oxford)
Abstract

A common pastime of geometric group theorists is to try and derive algebraic information about a group from the geometric properties of its Cayley graphs. One of the most classical demonstrations of this can be seen in the work of Maschke (1896) in characterising those finite groups with planar Cayley graphs. Since then, much work has been done on this topic. In this talk, I will attempt to survey some results in this area, and show that the class group with planar Cayley graphs is QI-rigid.

Wed, 17 May 2023
16:00
L6

A brief history of virtual Haken

Filippo Baroni
(University of Oxford)
Abstract

The virtual Haken theorem is one of the most influential recent results in 3-manifold theory. The statement dates back to Waldhausen, who conjectured that every aspherical closed 3-manifold has a finite cover containing an essential embedded closed surface. The proof is usually attributed to Agol, although his virtual special theorem is only the last piece of the puzzle. This talk is dedicated to the unsung heroes of virtual Haken, the mathematicians whose invaluable work helped turning this conjecture into a theorem. We will trace the history of a mathematical thread that connects Thurston-Perelman's geometrisation to Agol's final contribution, surveying Kahn-Markovic's surface subgroup theorem, Bergeron-Wise's cubulation of 3-manifold groups, Haglund-Wise's special cube complexes, Wise's work on quasi-convex hierarchies and Agol-Groves-Manning's weak separation theorem.

Wed, 03 May 2023
16:00
L6

A Motivation for Studying Hyperbolic Cusps

Misha Schmalian
(University of Oxford)
Abstract

We will give an introduction to hyperbolic cusps and their Dehn fillings. In particular, we will give a brief survey of quantitive results in the field. To motivate this work, we will sketch how these techniques are used for studying the classical question of characteristic slopes on knots.

Wed, 26 Apr 2023
16:00
L6

Insufficiency of simple closed curve homology

Adam Klukowski
(University of Oxford)
Abstract

This talk is concerned with the question of generating the homology of a covering space by lifts of simple closed curves (from topological viewpoint), and generating the first homology of a subgroup by powers of elements outside certain filtrations (from group-theoretic viewpoint). I will sketch Malestein's and Putman's construction of examples of branched covers where lifts of scc's span a proper subspace. I will discuss the relation of their proof to the Magnus embedding, and present recent results on similar embeddings of surface groups which facilitate extending their theorems to unbranched covers.

Tue, 13 Jun 2023
14:00
L3

Constructing Structure-Preserving Timesteppers via Finite Elements in Time

Boris Andrews
(University of Oxford)
Abstract

For many stationary-state PDEs, solutions can be shown to satisfy certain key identities or structures, with physical interpretations such as the dissipation of energy. By reformulating these systems in terms of new auxiliary functions, finite-element models can ensure these structures also hold exactly for the numerical solutions. This approach is known to improve the solutions' accuracy and reliability.

In this talk, we extend this auxiliary function approach to the transient case through a finite-element-in-time interpretation. This allows us to develop novel structure-preserving timesteppers for various transient problems, including the Navier–Stokes and MHD equations, up to arbitrary order in time.

 

Tue, 02 May 2023
14:30
L3

Newton-MR methods for nonconvex optimization

Yang Liu
(University of Oxford)
Abstract

In this talk, we introduce Newton-MR variants for solving nonconvex optimization problems. Unlike the overwhelming majority of Newton-type methods, which rely on conjugate gradient method as the primary workhorse for their respective sub-problems, Newton-MR employs minimum residual (MINRES) method. With certain useful monotonicity properties of MINRES as well as its inherent ability to detect non-positive curvature directions as soon as they arise, we show that our algorithms come with desirable properties including the optimal first and second-order worst-case complexities. Numerical examples demonstrate the performance of our proposed algorithms.

Tue, 25 Apr 2023
15:30

TBA

Andres Ibanez Nunez
(University of Oxford)
Subscribe to University of Oxford