Wed, 31 Jan 2024

16:00 - 17:00
L6

Distinguishing free-by-(finite cyclic) groups by their finite quotients

Paweł Piwek
(University of Oxford)
Abstract
Finitely generated free-by-(finite cyclic) groups turn out to be distinguished from each other by their finite quotients - and this is thanks to being very constrained by their finite subgroups and their centralisers. This has a consequence to distinguishing in the same way the free-by-cyclic groups with centre. This is joint work with Martin Bridson.
Wed, 17 Jan 2024

16:00 - 17:00
L6

Spectra of surfaces and MCG actions on random covers

Adam Klukowski
(University of Oxford)
Abstract

The Ivanov conjecture is equivalent to the statement that every covering map of surfaces has the so-called Putman-Wieland property. I will discuss my recent work with Vlad Marković, where we prove it for asymptotically all coverings as the degree grows. I will give some overview of our main tool: spectral geometry, which is related to objects like the heat kernel of a hyperbolic surface, or Cheeger connectivity constant.

Fri, 26 Jan 2024

12:00 - 13:00
Quillen Room

Coadmissible modules over Fréchet-Stein algebras

Finn Wiersig
(University of Oxford)
Abstract

Let K be a non-archimedean field of mixed characteristic (0,p), and let L be a finite extension of
the p-adic numbers contained in K. The speaker is interested in the continuous representations of a
given L-analytic group G in locally convex (usually infinite dimensional) topological vector spaces over K.
This is, up to technicalities, equivalent to studying certain topological modules over the locally
analytic distribution algebra D(G,K) of G. But doing algebra with topological objects is hard!
In this talk, we present an excellent remedy, found by Schneider and Teitelbaum in the early 2000s.

Thu, 18 Jan 2024
16:00
Lecture Room 4, Mathematical Institute

Traces of random matrices over F_q, and short character sums

Ofir Gorodetsky
(University of Oxford)
Abstract
Let g be a matrix chosen uniformly at random from the GL_n(F_q), where F_q is the field with q elements. We consider two questions:
1. For fixed k and growing n, how fast does Tr(g^k) converge to the uniform distribution on F_q?
2. How large can k be taken, as a function of n, while still ensuring that Tr(g^k) converges to the uniform distribution on F_q?
We will answer these two questions (as well as various variants) optimally. The questions turn out to be strongly related to the study of particular character sums in function fields.
Based on joint works with Brad Rodgers (arXiv:1909.03666) and Valeriya Kovaleva (arXiv:2307.01344).
Thu, 29 Feb 2024
16:00
Lecture Room 4

A new approach to modularity

Andrew Wiles
(University of Oxford)
Abstract

In the 1960's Langlands proposed a generalisation of Class Field Theory. I will review this and describe a new approach using the trace formua as well as some analytic arguments reminiscent of those used in the classical case. In more concrete terms the problem is to prove general modularity theorems, and I will explain the progress I have made on this problem.

Mon, 04 Mar 2024
16:00
L2

The dispersion method and beyond: from primes to exceptional Maass forms

Alexandru Pascadi
(University of Oxford)
Abstract
The dispersion method has found an impressive number of applications in analytic number theory, from bounded gaps between primes to the greatest prime factors of quadratic polynomials. The method requires bounding certain exponential sums, using deep inputs from algebraic geometry, the spectral theory of GL2 automorphic forms, and GLn automorphic L-functions. We'll give a broad outline of this process, which combines various types of number theory; time permitting, we'll also discuss the key ideas behind some new results.
 
Mon, 26 Feb 2024
16:00
L2

The Metaplectic Representation is Faithful

Christopher Chang, Simeon Hellsten, Mario Marcos Losada, and Sergiu Novac.
(University of Oxford)
Abstract

Iwasawa algebras are completed group rings that arise in number theory, so there is interest in understanding their prime ideals. For some special Iwasawa algebras, it is conjectured that every non-zero such ideal has finite codimension and in order to show this it is enough to establish the faithfulness of the modules arising from the completion of highest weight modules. In this talk we will look at methods for doing this and apply them to the specific case of the metaplectic representation for the symplectic group.

Mon, 19 Feb 2024
16:00
L2

On entropy of arithmetic functions

Fei Wei
(University of Oxford)
Abstract

In this seminar, I will talk about a notion of entropy of arithmetic functions and some properties of this entropy.  This notion was introduced to study Sarnak's Moebius Disjointness Conjecture.

Mon, 29 Jan 2024
16:00
L2

Quantitative bounds for a weighted version of Chowla's conjecture

Cédric Pilatte
(University of Oxford)
Abstract

The Liouville function $\lambda(n)$ is defined to be $+1$ if $n$ is a product of an even number of primes, and $-1$ otherwise. The statistical behaviour of $\lambda$ is intimately connected to the distribution of prime numbers. In many aspects, the Liouville function is expected to behave like a random sequence of $+1$'s and $-1$'s. For example, the two-point Chowla conjecture predicts that the average of $\lambda(n)\lambda(n+1)$ over $n < x$ tends to zero as $x$ goes to infinity. In this talk, I will discuss quantitative bounds for a logarithmic version of this problem.

Mon, 15 Jan 2024
16:00
L2

A friendly introduction to Shimura curves

Håvard Damm-Johnsen
(University of Oxford)
Abstract

Modular curves play a key role in the Langlands programme, being the simplest example of so-called Shimura varieties.  Their less famous cousins, Shimura curves, are also very interesting, and very concrete. 
In this talk I will give a gentle introduction to the arithmetic of Shimura curves, with lots of explicit examples. Time permitting, I will say something about recent work about intersection numbers of geodesics on Shimura curves.

Subscribe to University of Oxford