Wed, 04 Dec 2019
11:00
N3.12

Random Groups

David Hume
(University of Oxford)
Abstract

Finitely presented groups are a natural algebraic generalisation of the collection of finite groups. Unlike the finite case there is almost no hope of any kind of classification.

The goal of random groups is therefore to understand the properties of the "typical" finitely presented group. I will present a couple of models for random groups and survey some of the main theorems and open questions in the area, demonstrating surprising correlations between these probabilistic models, geometry and analysis.

Tue, 26 Nov 2019

14:00 - 15:00
L6

Partial Associativity in Latin Squares

Jason Long
(University of Oxford)
Further Information

Latin squares arise from the multiplication tables of groups, but the converse is not true in general. Given a Latin square A, we can define a group operation giving A as its multiplication table only when A satisfies a suitable associativity constraint. This observation leads to a natural question concerning the '1%' version: if A is only partially associative, can we still obtain something resembling a group structure? I will talk about some joint work with Tim Gowers on this question.

Mon, 02 Dec 2019

15:45 - 16:45
L3

Areas-of-areas on Hall trees generate the shuffle algebra

CRIS SALVI
(University of Oxford)
Abstract

We consider the coordinate-iterated-integral as an algebraic product on the shuffle algebra, called the (right) half-shuffle product. Its anti-symmetrization defines the biproduct  area(.,.), interpretable as the signed-area between two real-valued coordinate paths. We consider specific sets of binary, rooted trees known as Hall sets. These set have a complex combinatorial structure, which can be almost entirely circumvented by introducing the equivalent notion of Lazard sets. Using analytic results from dynamical systems and algebraic results from the theory of Lie algebras, we show that shuffle-polynomials in areas-of-areas on Hall trees generate the shuffle algebra.

Mon, 25 Nov 2019
12:45
L3

Special functions and complex surfaces in high-energy physics

Lorenzo Tancredi
(University of Oxford)
Abstract

I will elaborate on some recent developments on the theory of special functions which are relevant to the calculation of Feynman integrals in perturbative quantum field theory, highlighting the connections with some recent ideas in pure mathematics.

Fri, 06 Dec 2019

14:00 - 15:00
L6

From red to white: The time-varying nature of oceanic heat flux in the Arctic

Srikanth Toppaladoddi
(University of Oxford)
Abstract

Arctic sea ice is one of the most sensitive components of the Earth’s climate system. The underlying ocean plays an important role in the evolution of the ice cover through its heat flux at the ice-ocean interface. Despite its importance, the spatio-temporal variations of this heat flux are not well understood. In this talk, I will take the following approach to study the variations in the heat flux. First, I will consider the problem of classical Rayleigh-Bénard convection and systematically explore the effects of fractal boundaries on heat transport using direct numerical simulations. And second, I will analyze time-series data from the Surface Heat Budget of the Arctic Ocean (SHEBA) program using Multifractal Detrended Fluctuation Analysis (MFDFA) to understand the nature of fluctuations in the heat flux. I will also discuss developing simple stochastic ODEs using results from these studies.

Fri, 08 Nov 2019

14:00 - 15:00
L6

The role of ice shelves for marine ice sheet stability

Marianne Haseloff
(University of Oxford)
Further Information

The West Antarctic Ice Sheet is a marine ice sheet that rests on a bed below sea level. The stability of a marine ice sheet and its contribution to future sea level rise are controlled by the dynamics of the grounding line, where the grounded ice sheet transitions into a floating ice shelf. Recent observations suggest that Antarctic ice shelves experience widespread thinning due to contact with warming ocean waters, but quantifying the effect of these changes on marine ice sheet stability and extent remains a major challenge for both observational and modelling studies. In this talk, I show that grounding line stability of laterally confined marine ice sheets and outlet glaciers is governed by ice shelf dynamics, in particular calving front and melting conditions. I will discuss the implications of this dependence for projections of the future evolution of the West Antarctic Ice Sheet.

Mon, 28 Oct 2019

14:15 - 15:15
L3

Signature Cumulants and Ordered Partitions

PATRIC BONNIER
(University of Oxford)
Abstract

The sequence of so-called Signature moments describes the laws of many stochastic processes in analogy with how the sequence of moments describes the laws of vector-valued random variables. However, even for vector-valued random variables, the sequence of cumulants is much better suited for many tasks than the sequence of moments. This motivates the study of so-called Signature cumulants. To do so, an elementary combinatorial approach is developed and used to show that in the same way that cumulants relate to the lattice of partitions, Signature cumulants relate to the lattice of so-called "ordered partitions". This is used to give a new characterisation of independence of multivariate stochastic processes.

Subscribe to University of Oxford