Thu, 12 Nov 2015

12:00 - 13:00
L6

Energy decay in a 1D coupled heat-wave system

David Seifert
(University of Oxford)
Abstract

We study a simple one-dimensional coupled heat wave system, obtaining a sharp estimate for the rate of energy decay of classical solutions. Our approach is based on the asymptotic theory of $C_0$-semigroups and in particular on a result due to Borichev and Tomilov (2010), which reduces the problem of estimating the rate of energy decay to finding a growth bound for the resolvent of the semigroup generator. This technique not only leads to an optimal result, it is also simpler than the methods used by other authors in similar situations and moreover extends to problems on higher-dimensional domains. Joint work with C.J.K. Batty (Oxford) and L. Paunonen (Tampere).

Thu, 03 Dec 2015

16:00 - 17:00
L5

Galois theory of periods and applications

Francis Brown
(University of Oxford)
Abstract

A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.

Tue, 16 Jun 2015

14:00 - 14:30
L3

Best approximations in Chebfun and applications to digital filters

Mohsin Javed
(University of Oxford)
Abstract

In this talk I will give an overview of the algorithms used by Chebfun to numerically compute polynomial and trigonometric minimax approximations of continuous functions. I'll also present Chebfun's capabilities to compute best approximations on compact subsets of an interval and how these methods can be used to design digital filters.

Tue, 09 Jun 2015

14:30 - 15:00
L5

Krylov methods for operators

Jared Aurentz
(University of Oxford)
Abstract
In this talk we will explore the convergence of Krylov methods when used to solve $Lu = f$ where $L$ is an unbounded linear operator.  We will show that for certain problems, methods like Conjugate Gradients and GMRES still converge even though the spectrum of $L$ is unbounded. A theoretical justification for this behavior is given in terms of polynomial approximation on unbounded domains.    
Tue, 02 Jun 2015

14:30 - 15:00
L5

Continuum Modelling and Numerical Approaches for Diblock Copolymers

Quentin Parsons
(University of Oxford)
Abstract

We review a class of systems of non-linear PDEs, derived from the Cahn--Hilliard and Ohta--Kawasaki functionals, that describe the energy evolution of diblock copolymers. These are long chain molecules that can self assemble into repeating patterns as they cool. We are particularly interested in finite element numerical methods that approximate these PDEs in the two-phase (in which we model the polymer only) and three-phase (in which we imagine the polymer surrounded by, and interacting with, a void) cases.

We present a brief derivation of the underlying models, review a class of numerical methods to approximate them, and showcase some early results from our codes.

Tue, 02 Jun 2015

14:00 - 14:30
L5

Image Reconstruction from X-Ray Scanning

Maria Klodt
(University of Oxford)
Abstract

The talk will present ongoing work on medical image reconstruction from x-ray scanners. A suitable method for reconstruction of these undersampled systems is compressed sensing. The presentation will show respective reconstruction methods and their analysis. Furthermore, work in progress about extensions of the standard approach will be shown.

Tue, 26 May 2015

14:00 - 15:00
L5

Early volumes of MC, SIREV, NM, BIT, SINUM, IMANA

L. Nick Trefethen
(University of Oxford)
Abstract

When the Computing Laboratory discarded its hardcopy journals around 2008, I kept the first ten years or so of each of six classic numerical analysis journals, starting from volume 1, number 1.  This will not be a seminar in the usual sense but a mutual exploration.  Come prepared to look through a few of these old volumes yourself and perhaps to tell the group of something interesting you find.  Bring a pen and paper.  All are welcome.

Mathematics of Computation, from 1943
SIAM Journal, from 1953
Numerische Mathematik, from 1959
BIT, from 1961
SIAM Journal on Numerical Analysis, from 1964
Journal of the IMA, from 1965

Tue, 19 May 2015

14:00 - 14:30
L5

A fast and almost-banded spectral method for solving singular integral equations

Richard Mikhael Slevinsky
(University of Oxford)
Abstract

We develop a spectral method for solving univariate singular integral equations over unions of intervals and circles, by utilizing Chebyshev, ultraspherical and Laurent polynomials to reformulate the equations as banded infinite-dimensional systems. Low rank approximations are used to obtain compressed representations of the bivariate kernels. The resulting system can be solved in linear time using an adaptive QR factorization, determining an optimal number of unknowns needed to resolve the solution to any pre-determined accuracy. Applications considered include fracture mechanics, the Faraday cage, and acoustic scattering. The Julia software package https://github.com/ApproxFun/SIE.jl implements our method with a convenient, user-friendly interface.

Subscribe to University of Oxford