Fri, 04 Dec 2020

14:00 - 15:00
Virtual

Linking partition combinatorics to the geometry of Hilbert schemes

Eve Pound
(University of Sheffield)
Abstract

One of the key objects in studying the Hilbert Scheme of points in the plane is a torus action of $(\mathbb{C}^*)^2$. The fixed points of this action correspond to monomial ideals in $\mathbb{C}[x,y]$, and this gives a connection between the geometry of Hilbert schemes and partition combinatorics. Using this connection, one can extract identities in partition combinatorics from algebro-geometric information and vice versa. I will give some examples of combinatorial identities where as yet the only proofs we have rely on the geometry of Hilbert schemes. If there is time, I will also sketch out a hope that such identities can also be seen by representations of appropriately chosen algebras.

Mon, 21 Jan 2019
15:45
L6

Dilation of formal groups, and potential applications

Neil Strickland
(University of Sheffield)
Abstract


I will describe an extremely easy construction with formal group laws, and a 
slightly more subtle argument to show that it can be done in a coordinate-free
way with formal groups.  I will then describe connections with a range of other
phenomena in stable homotopy theory, although I still have many more 
questions than answers about these.  In particular, this should illuminate the
relationship between the Lambda algebra and the Dyer-Lashof algebra at the
prime 2, and possibly suggest better ways to think about related things at 
odd primes.  The Morava K-theory of symmetric groups is well-understood
if we quotient out by transfers, but somewhat mysterious if we do not pass
to that quotient; there are some suggestions that dilation will again be a key
ingredient in resolving this.  The ring $MU_*(\Omega^2S^3)$ is another
object for which we have quite a lot of information but it seems likely that 
important ideas are missing; dilation may also be relevant here.
 

Thu, 03 Mar 2016

16:00 - 17:00
L2

Hecke eigenvalue congruences and experiments with degree-8 L-functions

Neil Dummigan
(University of Sheffield)
Abstract

I will describe how the moduli of various congruences between Hecke eigenvalues of automorphic forms ought to show up in ratios of critical values of $\text{GSP}_2 \times \text{GL}_2$ L-functions. To test this experimentally requires the full force of Farmer and Ryan's technique for approximating L-values given few coefficients in the Dirichlet series.

Tue, 04 Feb 2014

14:00 - 15:00
L4

Stability conditions and Hitchin systems I

Tom Sutherland
(University of Sheffield)
Abstract

The instanton corrections to the hyperkähler metric on moduli spaces of meromorphic flat SL(2,C)-connections on a Riemann surface with prescribed singularities have recently been studied by Gaiotto, Moore and Neitzke. The instantons are given by certain special trajectories of the meromorphic quadratic differentials which form the base of Hitchin's integrable system structure on the moduli space. Bridgeland and Smith interpret such quadratic differentials as defining stability conditions on an associated 3-Calabi-Yau triangulated category whose stable objects correspond to these special trajectories.

The smallest non-trivial examples are provided by the moduli spaces of quaternionic dimension one. In these cases it is possible to study explicitly the periods of the Seiberg-Witten differential on the fibres of the Hitchin system which define the central charge of the stability condition and lift the period map to the space of stability conditions. This provides in particular a new categorical perspective on the original Seiberg-Witten gauge theories.

Fri, 02 Nov 2012

14:30 - 15:30
DH 3rd floor SR

Environmental controls on ice-dammed lake drainage

Jonny Kingslake
(University of Sheffield)
Abstract

Ice-dammed lakes form next to, on the surface of, and beneath glaciers

and ice sheets. Some lakes are known to drain catastrophically,

creating hazards, wasting water resources and modulating the flow of

the adjacent ice. My work aims to increase our understanding of such

drainage. Here I will focus on lakes that form next to glaciers and

drain subglacially (between ice and bedrock) through a channel. I will

describe how such a system can be modelled and present results from

model simulations of a lake that fills due to an input of meltwater

and drains through a channel that receives a supply of meltwater along

its length. Simulations yield repeating cycles of lake filling and

drainage and reveal how increasing meltwater input to the system

affects these cycles: enlarging or attenuating them depending on how

the meltwater is apportioned between the lake and the channel. When

inputs are varied with time, simulating seasonal meteorological

cycles, the model simulates either regularly repeating cycles or

irregular cycles that never repeat. Irregular cycles demonstrate

sensitivity to initial conditions, a high density of periodic orbits

and topological mixing. I will discuss how these results enhance our

understanding of the mechanisms behind observed variability in these

systems.

Tue, 22 Sep 2009

12:00 - 13:00
L3

(HoRSe seminar) Tilting and cluster transfromations

Tom Bridgeland
(University of Sheffield)
Abstract

I'll explain (following Kontsevich and Soibelman) how cluster transformations intertwine non-commutative DT invariants for CY3 algebras related by a tilt.

Subscribe to University of Sheffield