Tue, 30 Apr 2024

14:00 - 15:00
L4

The rainbow saturation number

Natalie Behague
(University of Warwick)
Abstract

The saturation number of a graph is a famous and well-studied counterpoint to the Turán number, and the rainbow saturation number is a generalisation of the saturation number to the setting of coloured graphs. Specifically, for a given graph $F$, an edge-coloured graph is $F$-rainbow saturated if it does not contain a rainbow copy of $F$, but the addition of any non-edge in any colour creates a rainbow copy of $F$. The rainbow saturation number of $F$ is the minimum number of edges in an $F$-rainbow saturated graph on $n$ vertices. Girão, Lewis, and Popielarz conjectured that, like the saturation number, for all $F$ the rainbow saturation number is linear in $n$. I will present our attractive and elementary proof of this conjecture, and finish with a discussion of related results and open questions.

Thu, 22 Feb 2024

12:00 - 13:00
L3

Structural identifiability analysis: An important tool in systems modelling

Michael Chappell
(University of Warwick)
Abstract

For many systems (certainly those in biology, medicine and pharmacology) the mathematical models that are generated invariably include state variables that cannot be directly measured and associated model parameters, many of which may be unknown, and which also cannot be measured.  For such systems there is also often limited access for inputs or perturbations. These limitations can cause immense problems when investigating the existence of hidden pathways or attempting to estimate unknown parameters and this can severely hinder model validation. It is therefore highly desirable to have a formal approach to determine what additional inputs and/or measurements are necessary in order to reduce or remove these limitations and permit the derivation of models that can be used for practical purposes with greater confidence.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed, properties of a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants and other model parameters.  Structural identifiability analysis considers the uniqueness of the unknown model parameters from the input-output structure corresponding to proposed experiments to collect data for parameter estimation (under an assumption of the availability of continuous, noise-free observations).  This is an important, but often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, since estimates for unidentifiable parameters are effectively meaningless.  If parameter estimates are to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that the parameters be uniquely identifiable. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and this is a well-understood topic.  In comparison, there are relatively few techniques available for nonlinear systems (the Taylor series approach, similarity transformation-based approaches, differential algebra techniques and the more recent observable normal form approach and symmetries approaches) and significant (symbolic) computational problems can arise, even for relatively simple models in applying these techniques.

In this talk an introduction to structural identifiability analysis will be provided demonstrating the application of the techniques available to both linear and nonlinear parameterised systems and to models of (nonlinear mixed effects) population nature.


 
Tue, 13 Feb 2024

14:00 - 15:00
L4

On the $(k+2,k)$-problem of Brown, Erdős and Sós

Oleg Pikhurko
(University of Warwick)
Abstract

Brown-Erdős-Sós initiated the study of the maximum number of edges in an $n$-vertex $r$-graph such that no $k$ edges span at most $s$ vertices. If $s=rk-2k+2$ then this function is quadratic in $n$ and its asymptotic was previously known for $k=2,3,4$. I will present joint work with Stefan Glock, Jaehoon Kim, Lyuben Lichev and Shumin Sun where we resolve the cases $k=5,6,7$.

Fri, 23 Feb 2024

12:00 - 13:00
Quillen Room

Homotopy type of SL2 quotients of simple simply connected complex Lie groups

Dylan Johnston
(University of Warwick)
Abstract
We say an element X in a Lie algebra g is nilpotent if ad(X) is a nilpotent operator. It is known that G_{ad}-orbits of nilpotent elements of a complex semisimple Lie algebra g are in 1-1 correspondence with Lie algebra homomorphisms sl2 -> g, which are in turn in 1-1 correspondence with Lie group homomorphisms SL2 -> G.
Thus, we may denote the homogeneous space obtained by quotienting G by the image of a Lie group homomorphism SL2 -> G by X_v, where v is a nilpotent element in the corresponding G_{ad}-orbit.
In this talk we introduce some algebraic tools that one can use to attempt to classify the homogeneous spaces, X_v, up to homotopy equivalence.
Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Tue, 30 Jan 2024

14:00 - 15:00
L4

Kneser graphs are Hamiltonian

Torsten Mütze
(University of Warwick)
Abstract

For integers $k \ge 1$ and $n \ge 2k+1$, the Kneser graph $K(n,k)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph $K(5,2)$. This problem received considerable attention in the literature, including a recent solution for the sparsest case $n=2k+1$. The main contribution of our work is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph $J(n,k,s)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two sets whose intersection has size exactly $s$. Clearly, we have $K(n,k)=J(n,k,0)$, i.e., generalized Johnson graphs include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lovász' conjecture on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway’s Game of Life, and to analyze this system combinatorially and via linear algebra.

This is joint work with my students Arturo Merino (TU Berlin) and Namrata (Warwick).

Thu, 25 Jan 2024

12:00 - 13:00
L3

Collective motion and environmental path entropy

Matthew Turner
(University of Warwick)
Further Information

Matthew Turner is a Professor in the Physics department, attached to the Complexity center, at Warwick University. He works on Biological and Soft Matter Physics, amongst other things.

Abstract

 

We study “bottom-up” models for the collective motion of large groups of animals. Similar models can be encoded into (micro)robotic matter, capable of sensing light and processing information. Agents are endowed only with visual sensing and information processing. We study a model in which moving agents reorientate to maximise the path-entropy of their visual environment over paths into the future. There are general arguments that principles like this that are based on retaining freedom in the future may confer fitness in an uncertain world. Alternative “top-down” models are more common in the literature. These typically encode coalignment and/or cohesion directly and are often motivated by models drawn from physics, e.g. describing spin systems. However, such models can usually give little insight into how co-alignment and cohesion emerge because these properties are encoded in the model at the outset, in a top-down manner. We discuss how our model leads to dynamics with striking similarities with animal systems, including the emergence of coalignment, cohesion, a characteristic density scaling anddifferent behavioural phenotypes. The dynamics also supports a very unusual order-disorder transition in which the order (coalignment) initially increases upon the addition of sensory or behavioural noise, before decreasing as the noise becomes larger.

 

 

Mon, 22 Jan 2024
16:00
L2

Computing Tangent Spaces to Eigenvarieties

James Rawson
(University of Warwick)
Abstract

Many congruences between modular forms (or at least their q-expansions) can be explained by the theory of $p$-adic families of modular forms. In this talk, I will discuss properties of eigenvarieties, a geometric interpretation of the idea of $p$-adic families. In particular, focusing initially on the well-understood case of (elliptic) modular forms, before delving into the considerably murkier world of Bianchi modular forms. In this second case, this work gives numerical verification of a couple of conjectures, including BSD by work of Loeffler and Zerbes.

Tue, 23 Apr 2024

14:00 - 15:00
L5

Symmetric spaces, where Topology meets Representation Theory

Dmitriy Rumynin
(University of Warwick)
Abstract

We will use Representation Theory to calculate systematically and efficiently the topological invariants of compact Lie groups and homogeneous spaces.
 

Most of the talk is covered by our second paper on ArXiv with John Jones and Adam Thomas, who are both at Warwick. The paper is part of the ongoing project to study the topological invariants of the four exceptional Rosenfeld projective planes.

Subscribe to University of Warwick