Mon, 09 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Gradient estimates for Brownian bridges to submanifolds

JAMES THOMPSON
(University of Warwick)
Abstract

Abstract: A diffusion process on a Riemannian manifold whose generator is one half of the Laplacian is called a Brownian motion. The mean local time of Brownian motion on a hypersurface will be considered, as will the situation in which a Brownian motion is conditioned to arrive in a fixed submanifold at a fixed positive time. Doing so provides motivation for the remainder of the talk, in which a probabilistic formula for the integral of the heat kernel over a submanifold is proved and used to deduce lower bounds, an asymptotic relation and derivative estimates applicable to the conditioned process.

 

Mon, 02 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Pfaffians, 1-d particle systems and random matrices.

ROGER TRIBE
(University of Warwick)
Abstract

Abstract: Joint work with Oleg Zaboronsky (Warwick).

Some one dimensional nearest neighbour particle systems are examples of Pfaffian point processes - where all intensities are determined by a single kernel.In some cases these kernels have appeared in the random matrix literature (where the points are the positions of eigenvalues). We are attempting to use random matrix tools on the particle sytems, and particle tools on the random matrices.

 

 

Thu, 22 Oct 2015

12:00 - 13:00
L6

A two-speed model for rate-independent elasto-plasticity

Filip Rindler
(University of Warwick)
Abstract
In the first part of this talk I will develop a model for (phenomenological) large-strain evolutionary elasto-plasticity that aims to find a balance between physical accuracy and mathematical tractability. Starting from a viscous dissipation model I will show how a time rescaling leads to the new concept of "two-speed" solutions, which combine a rate-independent "slow" evolution with rate-dependent "fast" transients during jumps. An existence theorem for two-speed solutions to fully nonlinear elasto-plasticity models is the long-term goal and as a first step I will present an existence result for the small-strain situation in this new framework. This theorem combines physically realistic behaviour on jumps with minimisation in the "elastic" variables. The proof hinges on a time-stepping scheme that alternates between elastic minimisation and elasto-plastic relaxation. The key technical ingredient the "propagation of (higher) regularity" from one step to the next.
Thu, 15 Oct 2015

16:00 - 17:00
L5

Sums of seven cubes

Samir Siksek
(University of Warwick)
Abstract

In 1851, Carl Jacobi made the experimental observation that all integers are sums of seven non-negative cubes, with precisely 17 exceptions, the largest of which is 454. Building on previous work by Maillet, Landau, Dickson, Linnik, Watson, Bombieri, Ramaré, Elkies and many others, we complete the proof of Jacobi's observation.

Tue, 12 May 2015
14:30
L6

Measurable circle squaring

Oleg Pikhurko
(University of Warwick)
Abstract
In 1990 Laczkovich proved that, for any two sets $A$ and $B$ in $\mathbb{R}^n$ with the same non-zero Lebesgue measure and with boundary of box dimension less than $n$, there is a partition of $A$ into finitely many parts that can be translated by some vectors to form a partition of $B$. I will discuss this problem and, in particular, present our recent result with András Máthé and Łukasz Grabowski that all parts can be made Lebesgue measurable.
Tue, 05 May 2015
14:30
L5

Finitely forcible limits of graphs and permutations

Tereza Klimošová
(University of Warwick)
Abstract

Graphons and permutons are analytic objects associated with convergent sequences of graphs and permutations, respectively. Problems from extremal combinatorics and theoretical computer science led to a study of graphons and permutons determined by finitely many substructure densities, which are referred to as finitely forcible. The talk will contain several results on finite forcibility, focusing on the relation between finite forcibility of graphons and permutons. We also disprove a conjecture of Lovasz and Szegedy about the dimension of the space of typical vertices of finitely forcible graphons. The talk is based on joint work with Roman Glebov, Andrzej Grzesik and Dan Kral.

Tue, 05 May 2015

15:45 - 16:45
L4

Tropical schemes

Diane Maclagan
(University of Warwick)
Abstract

Tropicalization replaces a variety by a polyhedral complex that is a "combinatorial shadow" of the original variety.  This allows algebraic geometric problems to be attacked using combinatorial and
polyhedral techniques.  While this idea has proved surprisingly effective over the last decade, it has so far been restricted to the study of varieties and algebraic cycles.  I will discuss joint work with Felipe Rincon, building on work of Jeff and Noah Giansiracusa, to understand tropicalizing schemes, and more generally the concept of a tropical scheme.

Thu, 07 May 2015

16:00 - 17:00
L5

Heuristics for distributions of Arakelov class groups

Alex Bartel
(University of Warwick)
Abstract

The Cohen-Lenstra heuristics, postulated in the early 80s, conceptually explained numerous phenomena in the behaviour of ideal class groups of number fields that had puzzled mathematicians for decades, by proposing a probabilistic model: the probability that the class group of an imaginary quadratic field is isomorphic to a given group $A$ is inverse proportional to $\#\text{Aut}(A)$. This is a very natural model for random algebraic objects. But the probability weights for more general number fields, while agreeing well with experiments, look rather mysterious. I will explain how to recover the original heuristic in a very conceptual way by phrasing it in terms of Arakelov class groups instead. The main difficulty that one needs to overcome is that Arakelov class groups typically have infinitely many automorphisms. We build up a theory of commensurability of modules, of groups, and of rings, in order to remove this obstacle. This is joint work with Hendrik Lenstra.

Thu, 05 Mar 2015

16:00 - 17:00
L2

Some density results in number theory

John Cremona
(University of Warwick)
Abstract

I will describe joint work with Manjul Bhargava (Princeton) and Tom Fisher (Cambridge) in which we determine the probability that random equation from certain families  has a solution either locally (over the reals or the p-adics), everywhere locally,  or globally. Three kinds of equation will be considered: quadratics in any number of variables, ternary cubics and hyperelliptic quartics.

Tue, 24 Feb 2015
12:30
Oxford-Man Institute

Measuring and predicting human behaviour using online data

Tobias Preis
(University of Warwick)
Abstract

In this talk, I will outline some recent highlights of our research, addressing two questions. Firstly, can big data resources provide insights into crises in financial markets? By analysing Google query volumes for search terms related to finance and views of Wikipedia articles, we find patterns which may be interpreted as early warning signs of stock market moves. Secondly, can we provide insight into international differences in economic wellbeing by comparing patterns of interaction with the Internet? To answer this question, we introduce a future-orientation index to quantify the degree to which Internet users seek more information about years in the future than years in the past. We analyse Google logs and find a striking correlation between the country's GDP and the predisposition of its inhabitants to look forward. Our results illustrate the potential that combining extensive behavioural data sets offers for a better understanding of large scale human economic behaviour.

Subscribe to University of Warwick