Thu, 17 Feb 2022
14:00
Virtual

K-Spectral Sets

Anne Greenbaum
(University of Washington)
Abstract

Let $A$ be an $n$ by $n$ matrix or a bounded linear operator on a complex Hilbert space $(H, \langle \cdot , \cdot \rangle , \| \cdot \|)$. A closed set $\Omega \subset \mathbb{C}$ is a $K$-spectral set for $A$ if the spectrum of $A$ is contained in $\Omega$ and if, for all rational functions $f$ bounded in $\Omega$, the following inequality holds:
\[\| f(A) \| \leq K \| f \|_{\Omega} ,\]
where $\| \cdot \|$ on the left denotes the norm in $H$ and $\| \cdot \|_{\Omega}$ on the right denotes the $\infty$-norm on $\Omega$. A simple way to obtain a $K$ value for a given set $\Omega$ is to use the Cauchy integral formula and replace the norm of the integral by the integral of the resolvent norm:
\[f(A) = \frac{1}{2 \pi i} \int_{\partial \Omega} ( \zeta I - A )^{-1}
f( \zeta )\,d \zeta \Rightarrow
\| f(A) \| \leq \frac{1}{2 \pi} \left( \int_{\partial \Omega}
\| ( \zeta I - A )^{-1} \|~| d \zeta | \right) \| f \|_{\Omega} .\]
Thus one can always take
\[K = \frac{1}{2 \pi} \int_{\partial \Omega} \| ( \zeta I - A )^{-1} \| | d \zeta | .\]
In M. Crouzeix and A. Greenbaum, Spectral sets: numerical range and beyond, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1087-1101, different bounds on $K$ were derived.  I will show how these compare to that from the Cauchy integral formula for a variety of applications.  In case $A$ is a matrix and $\Omega$ is simply connected, we can numerically compute what we believe to be the optimal value for $K$ (and, at least, is a lower bound on $K$).  I will show how these values compare with the proven bounds as well.

(joint with  Michel Crouzeix and Natalie Wellen)
 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Tue, 23 Feb 2021

14:00 - 15:00
Virtual

Motifs for processes on networks

Alice C. Schwarze
(University of Washington)
Abstract

The study of motifs in networks can help researchers uncover links between structure and function of networks in biology, the sociology, economics, and many other areas. Empirical studies of networks have identified feedback loops, feedforward loops, and several other small structures as "motifs" that occur frequently in real-world networks and may contribute by various mechanisms to important functions these systems. However, the mechanisms are unknown for many of these motifs. We propose to distinguish between "structure motifs" (i.e., graphlets) in networks and "process motifs" (which we define as structured sets of walks) on networks and consider process motifs as building blocks of processes on networks. Using the covariances and correlations in a multivariate Ornstein--Uhlenbeck process on a network as examples, we demonstrate that the distinction between structure motifs and process motifs makes it possible to gain quantitative insights into mechanisms that contribute to important functions of dynamical systems on networks.

Tue, 13 Feb 2018

15:45 - 16:45
L4

Uniformity of integral points and moduli spaces of stable pairs

Amos Turchet
(University of Washington)
Abstract

Starting from the seminal paper of Caporaso-Harris-Mazur, it has been proved that if Lang's Conjecture holds in arbitrary dimension, then it implies a uniform bound for the number of rational points in a curve of general type and analogue results in higher dimensions. In joint work with Kenny Ascher we prove analogue statements for integral points (or more specifically stably-integral points) on curves of log general type and we extend these to higher dimensions. The techniques rely on very recent developments in the theory of moduli spaces for stable pairs, a higher dimensional analogue of pointed stable curves.
If time permits we will discuss how very interesting problems arise in dimension 2 that are related to the geometry of the log-cotangent bundle.

Thu, 22 May 2003

14:00 - 15:00
Comlab

Immersed interface methods for fluid dynamics problems

Prof Randy LeVeque
(University of Washington)
Abstract

Immersed interface methods have been developed for a variety of

differential equations on domains containing interfaces or irregular

boundaries. The goal is to use a uniform Cartesian grid (or other fixed

grid on simple domain) and to allow other boundaries or interfaces to

cut through this grid. Special finite difference formulas are developed

at grid points near an interface that incorporate the appropriate jump

conditions across the interface so that uniform second-order accuracy

(or higher) can be obtained. For fluid flow problems with an immersed

deformable elastic membrane, the jump conditions result from a balance

between the singular force imposed by the membrane, inertial forces if

the membrane has mass, and the jump in pressure across the membrane.

A second-order accurate method of this type for Stokes flow was developed

with Zhilin Li and more recently extended to the full incompressible

Navier-Stokes equations in work with Long Lee.

Subscribe to University of Washington