Tue, 30 Jun 2020

15:30 - 16:30

Application of Stein's method to linear statistics of beta-ensembles

Gaultier Lambert
(University of Zurich)
Abstract

In the first part of the talk, I will review the basic ideas behind Stein’s method for normal approximation and present a general result which we obtained in arXiv:1706.10251 (joint work with Michel Ledoux and Christian Webb). This result states that for a Gibbs measure, an eigenfunction of the corresponding infinitesimal generator is approximately Gaussian in a sense which will be made precise. In the second part, I will report on several applications in random matrix theory. This includes a proof of Johansson’s central limit theorem for linear statistics of beta-ensembles on \R, as well as an application to circular beta-ensembles in the high temperature regime (based on arXiv:1909.01142, joint work with Adrien Hardy).

Tue, 02 Jun 2020
15:30
Virtual

Scaling exponents of step-reinforced random walks

Jean Bertoin
(University of Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Let $X_1, \ldots$ be i.i.d. copies of some real random variable $X$. For any $\varepsilon_2, \varepsilon_3, \ldots$ in $\{0,1\}$, a basic algorithm introduced by H.A. Simon yields a reinforced sequence $\hat{X}_1, \hat{X}_2, \ldots$ as follows. If $\varepsilon_n=0$, then $\hat{X}_n$ is a uniform random sample from $\hat{X}_1, …, \hat{X}_{n-1}$; otherwise $\hat{X}_n$ is a new independent copy of $X$. The purpose of this talk is to compare the scaling exponent of the usual random walk $S(n)=X_1 +\ldots + X_n$ with that of its step reinforced version $\hat{S}(n)=\hat{X}_1+\ldots + \hat{X}_n$. Depending on the tail of $X$ and on asymptotic behavior of the sequence $\varepsilon_j$, we show that step reinforcement may speed up the walk, or at the contrary slow it down, or also does not affect the scaling exponent at all. Our motivation partly stems from the study of random walks with memory, notably the so-called elephant random walk and its variations.

Thu, 11 Oct 2018

16:00 - 17:30
L3

Field-free trapping and measurement of single molecules in solution

Madhavi Krishnan
(University of Zurich)
Abstract

The desire to “freely suspend the constituents of matter” in order to study their behavior can be traced back over 200 years to the diaries of Lichtenberg. From radio-frequency ion traps to optical tweezing of colloidal particles, existing methods to trap matter in free space or solution rely on the use of external fields that often strongly perturb the integrity of a macromolecule in solution. We recently introduced the ‘electrostatic fluidic trap’, an approach that exploits equilibrium thermodynamics to realise stable, non-destructive confinement of single macromolecules in room temperature fluids, and represents a paradigm shift in a nearly century-old field. The spatio-temporal dynamics of a single electrostatically trapped object reveals fundamental information on its properties, e.g., size and electrical charge. We have demonstrated the ability to measure the electrical charge of a single macromolecule in solution with a precision much better than a single elementary charge. Since the electrical charge of a macromolecule in solution is in turn a strong function of its 3D conformation, our approach enables for the first time precise, general measurements of the relationship between 3D structure and electrical charge of a single macromolecule, in real time. I will present our most recent advances in this emerging area of molecular measurement and show how such high-precision measurement at the nanoscale may be able to unveil the presence of previously unexpected phenomena in intermolecular interactions in solution.

Wed, 01 Feb 2017
15:00

Code Based Cryptography using different Metrics

Joachim Rosenthal
(University of Zurich)
Abstract

Code based Cryptography had its beginning in 1978 when Robert McEliece
demonstrated how the hardness of decoding a general linear code up to
half the minimum distance can be used as the basis for a public key
crypto system.  At the time the proposed system was not implemented in
practice as the required public key was relatively large.

With the realization that a quantum computer would make many
practically used systems obsolete coding based systems became an
important research subject in the area of post-quantum cryptography.
In this talk we will provide an overview to the subject.

In addition  we will report on recent results where the underlying
code is a disguised Gabidulin code or more generally a subspace
code and where the distance measure is the rank metric respecively the
subspace distance.
 

Mon, 13 Oct 2014

17:00 - 18:00
L6

Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux

Guido de Phillippis
(University of Zurich)
Abstract

      I will show uniqueness result for BV solutions of scalar conservation laws with discontinuous flux in several space dimensions. The proof is based on the notion of kinetic solution and on a careful analysis of the entropy dissipation along the discontinuities of the flux.
 

Fri, 31 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 4 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 24 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 3 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 17 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 2 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Fri, 10 May 2013

10:00 - 11:00
Gibson Grd floor SR

Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 1 of 4

Michel Chipot
(University of Zurich)
Abstract

A mini-lecture series consisting of four 1 hour lectures.

We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.
Thu, 10 Mar 2011

13:00 - 14:00
SR1

The $A_\infty$ de Rham theorem and higher holonomies

Camilo Arias Abad
(University of Zurich)
Abstract

I will explain how Chen's iterated integrals can be used to construct an $A_\infty$-version of de Rham's theorem (originally due to Gugenheim). I will then explain how to use this result to construct generalized holonomies and integrate homotopy representations in Lie theory.

Subscribe to University of Zurich