Mon, 04 Feb 2019

15:45 - 16:45
L3

The parabolic Anderson model in 2 d, mass- and eigenvalue asymptotics

WILLEM VAN ZUIJLEN
(WIAS Berlin)
Abstract


In this talk I present work in progress with Wolfgang König and Nicolas Perkowski on the parabolic Anderson model (PAM) with white noise potential in 2d. We show the behavior of the total mass as the time tends to infinity. By using partial Girsanov transform and singular heat kernel estimates we can obtain the mass-asymptotics by using the eigenvalue asymptotics that have been showed in another work in progress with Khalil Chouk. 

Mon, 15 Oct 2018

15:45 - 16:45
L3

Deep calibration of the rough Bergomi model

BENJAMIN STEMPER
(WIAS Berlin)
Abstract

Unlike standard bivariate diffusion models, the rough Bergomi model by Bayer, Friz, and Gatheral (2016) allows to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. However, falling into the class of so-called rough stochastic volatility models sparked by Alo`s, Leo ́n, and Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson, and Rosenbaum (2018), its non-Markovianity poses serious mathematical and computational challenges. To date, calibrating rough Bergomi remained prohibitively expensive since standard calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, which in the case of rough Bergomi involves a costly Monte Carlo simulation (Bennedsen, Lunde, & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier, & Muguruza, 2017). In this paper, we resolve the issue by combining a standard Levenberg-Marquardt calibration routine with a neural network regression, replacing expensive MC simulations with cheap forward runs of a network trained to approximate the implied volatility map. Some numerical results show the prowess of this approach.

Mon, 05 Mar 2018

15:45 - 16:45
L3

McKean-Vlasov SDEs with irregular drift: large deviations for particle approximation

MARIO MAURELLI
(WIAS Berlin)
Abstract

McKean-Vlasov SDEs are SDEs where  the coefficients depend on the law of the solution to the SDE. Their interest is in the links with nonlinear PDEs on one side (the SDE-related Fokker-Planck equation is nonlinear) and with interacting particles on the other side: the McKean-Vlasov SDE be approximated by a system of weakly coupled SDEs. In this talk we consider McKean-Vlasov SDEs with irregular drift: though well-posedness for this SDE is not known, we show a large deviation principle for the corresponding interacting particle system. This implies, in particular, that any limit point of the particle system solves the McKean-Vlasov SDE. The proof combines rough paths techniques and an extended Vanrdhan lemma.

This is a joint work with Thomas Holding.

Mon, 31 Oct 2016

14:15 - 15:15
L3

Model reduction for stochastic differential equations

MARTIN REDMANN
(WIAS Berlin)
Abstract

SPDEs with Lévy noise can be used to model chemical, physical or biological phenomena which contain uncertainties. When discretising these SPDEs in order to solve them numerically the problem might be of large order. The goal is to save computational time by replacing large scale systems by systems of low order capturing the main information of the full model. In this talk, we therefore discuss balancing related MOR techniques. We summarise already existing results and discuss recent achievements.

Thu, 29 Oct 2015

12:00 - 13:00
L6

Quantitative flatness results for nonlocal minimal surfaces in low dimensions

Eleonora Cinti
(WIAS Berlin)
Abstract

 

We consider minimizers of nonlocal functionals, like the fractional perimeter, or the fractional anisotropic perimeter, in low dimensions. It is known that a minimizer for the nonlocal perimeter in $\mathbb{R}^2 $ is necessarily an halfplane. We give a quantitative version of this result, in the following sense: we prove that minimizers in a ball of radius $R$ are nearly flat in $B_1$, when $R$ is large enough. More precisely, we establish a quantitative estimate on how "close" these sets are (in the $L^{1}$ -sense and in the $L^{\infty}$ -sense) to be a halfplane, depending on $R$. This is a joint work with Joaquim Serra and Enrico Valdinoci.
Mon, 20 Jan 2014

15:45 - 16:45

Random matrices at high temperature"

ROMAIN ALLEZ
(WIAS Berlin)
Abstract

We shall discuss the statistics of the eigenvalues of large random Hermitian matrices when the temperature is very high. In particular we shall focus on the transition from Wigner/Airy to Poisson regime.

Subscribe to WIAS Berlin