Tue, 09 May 2023

16:00 - 17:00
C1

Wreath-like product groups and rigidity of their von Neumann algebras

Adrian Ioana
(UC San Diego)
Abstract

Wreath-like products are a new class of groups, which are close relatives of the classical wreath products. Examples of wreath-like product groups arise from every non-elementary hyperbolic groups by taking suitable quotients. As a consequence, unlike classical wreath products, many wreath-like products have Kazhdan's property (T). 

I will present several rigidity results for von Neumann algebras of wreath-like product groups. We show that any group G in a natural family of wreath-like products with property (T) is W*-superrigid: the group von Neumann algebra L(G) remembers the isomorphism class of G. This provides the first examples of W*-superrigid groups with property (T). For a wider class wreath-like products with property (T), we show that any isomorphism of their group von Neumann algebras arises from an isomorphism of the groups. As an application, we prove that any countable group can be realized as the outer automorphism group of L(G), for an icc property (T) group G. These results are joint with Ionut Chifan, Denis Osin and Bin Sun.  

Time permitting, I will mention an additional application of wreath-like products obtained in joint work with Ionut Chifan and Daniel Drimbe, and showing that any separable II_1 factor is contained in one with property (T). This provides an operator algebraic counterpart of the group theoretic fact that every countable group is contained in one with property (T).

Mon, 30 Nov 2020

16:00 - 17:00
Virtual

A Riemannian Quantitative Isoperimetric Inequality

Luca Spolaor
(UC San Diego)
Abstract

 In this talk I will discuss possible extensions of the euclidean quantitative isoperimetric inequality to compact Riemannian manifolds. 
This is joint work with O. Chodosh (Stanford) and M. Engelstein (University of Minnesota).

Thu, 09 May 2019

16:00 - 17:30
L3

Self-similarly expanding regions of phase change yield cavitational instabilities and model deep earthquakes

Professor Xanthippi Markenscoff
(UC San Diego)
Further Information

Department of Mechanical and Aerospace Engineering University of California, San Diego La Jolla, CA 92093-0411 

@email 

Abstract

[[{"fid":"54621","view_mode":"preview","fields":{"format":"preview"},"link_text":"Prof Markenscoff Paper.pdf","type":"media","field_deltas":{"2":{"format":"preview"}},"attributes":{"class":"media-element file-preview","data-delta":"2"}}]]

Abstract

The dynamical fields that emanate from self-similarly expanding ellipsoidal regions undergoing phase change (change in density, i.e., volume collapse, and change in moduli) under pre-stress, constitute the dynamic generalization of the seminal Eshelby inhomogeneity problem (as an equivalent inclusion problem), and they consist of pressure, shear, and M waves emitted by the surface of the expanding ellipsoid and yielding Rayleigh waves in the crack limit. They may constitute the model of Deep Focus Earthquakes (DFEs) occurring under very high pressures and due to phase change. Two fundamental theorems of physics govern the phenomenon, the Cauchy-Kowalewskaya theorem, which based on dimensional analysis and analytic properties alone, dictates that there is zero particle velocity in the interior, and Noether’s theorem that extremizes (minimizes for stability) the energy spent to move the boundary so that it does not become a sink (or source) of energy, and determines the self-similar shape (axes expansion speeds). The expression from Noether’s theorem indicates that the expanding region can be planar, thus breaking the symmetry of the input and the phenomenon manifests itself as a newly discovered one of a “dynamic collapse/ cavitation instability”, where very large strain energy condensed in the very thin region can escape out. In the presence of shear, the flattened very thin ellipsoid (or band) will be oriented in space so that the energy due to phase change under pre-stress is able to escape out at minimum loss condensed in the core of dislocations gliding out on the planes where the maximum configurational force (Peach-Koehler) is applied on them. Phase change occurring planarly produces in a flattened expanding ellipdoid a new defect present in the DFEs. The radiation patterns are obtained in terms of the equivalent to the phase change six eigenstrain components, which also contain effects due to planarity through the Dynamic Eshelby Tensor for the flattened ellipsoid. Some models in the literature of DFEs are evaluated and excluded on the basis of not having the energy to move the boundary of phase discontinuity. Noether’s theorem is valid in anisotropy and nonlinear elasticity, and the phenomenon is independent of scales, valid from the nano to the very large ones, and applicable in general to other dynamic phenomena of stress induced martensitic transformations, shear banding, and amorphization.

 

Tue, 18 Nov 2014

12:30 - 13:30
Oxford-Man Institute

tba

Dr. Joseph Engelberg
(UC San Diego)
Subscribe to UC San Diego