Mon, 10 Feb 2025
15:30
L5

Invariants that are covering spaces and their Hopf algebras

Ehud Meir
(The University of Aberdeen)
Abstract
Different flavours of string diagrams arise naturally in studying algebraic structures (e.g. algebras, Hopf algebras, Frobenius algebras) in monoidal categories. In particular, closed diagrams can be realized as scalar invariants. For a structure of a given type the closed diagrams form a commutative algebra that has a richer structure of a self dual Hopf algebra. This is very similar, but not quite the same, as the positive self adjoint Hopf (or PSH) algebras that were introduced by Zelevinsky in studying families of representations of finite groups. In this talk I will show that the algebras of invariants admit a lattice that is a PSH-algebra. This will be done by considering maps between invariants, and realizing them as covering spaces. I will then show some applications to subgroup growth questions, and a formula that relates the Kronecker coefficients to finite index subgroups of free groups. If time permits, I will also explain some connections with 2 dimensional TQFTs.

 
 
Thu, 30 Oct 2014

14:00 - 16:00
L4

Transversal slices to conjugacy classes in algebraic groups and Lustig's partition.

Alexey Sevastyanov
(The University of Aberdeen)
Abstract

I shall show that for every conjugacy class O in a connected semisimple algebraic group G over an algebraically closed field of characteristic good for G one can find a special transversal slice S to the set of conjugacy classes in G such that O intersects S and dim O=codim S. The construction of the slice utilizes some new combinatorics related to invariant planes for the action of Weyl group elements in the reflection representation. The condition dim O=codim S is checked using some new mysterious results by Lusztig on intersection of conjugacy classes in algebraic groups with Bruhat cells.

Subscribe to The University of Aberdeen