Tue, 25 Feb 2020

10:00 - 11:00
S2.37

Mathematics of Brain Modelling - Spatial navigation in preclinical and clinical Alzheimer’s disease

Professor Michael Hornberger
(University of East Anglia)
Further Information

Booking Essential ociam@maths.ox.ac.uk

Abstract

Spatial navigation in preclinical and clinical Alzheimer’s disease - Relevance for topological data analysis?

Spatial navigation changes are one of the first symptoms of Alzheimer’s disease and also lead to significant safeguarding issues in patients after diagnosis. Despite their significant implications, spatial navigation changes in preclinical and clinical Alzheimer’s disease are still poorly understood. In the current talk, I will explain the spatial navigation processes in the brain and their relevance to Alzheimer’s disease. I will then introduce our Sea Hero Quest project, which created the first global benchmark data for spatial navigation in ~4.5 million people worldwide via a VR-based game. I will present data from the game, which has allowed to create personalised benchmark data for at-risk-of-Alzheimer’s people. The final part of my talk will explore how real-world environment & entropy impacts on dementia patients getting lost and how this has relevance for GPS technology based safeguarding and car driving in Alzheimer’s disease.

Thu, 25 Oct 2018

12:00 - 13:00
S2.37

Convergence of graphs: graphons and growth models

Frederik Sørensen (University of Oxford)
(University of Oxford)
Abstract

An informal session for DPhil students, ECRs and undergraduates with an interest in probability. The aim is to gain exposure to areas outside of your own research interests in an informal and accessible way.

Wed, 21 Jun 2017
15:00
S2.37

Post-Quantum Key Exchange from the LWE

Jintai Ding
(University of Cincinnati)
Abstract

In this lecture, we present  practical and provably
secure (authenticated) key exchange protocol and password
authenticated key exchange protocol, which are based on the
learning with errors problems. These protocols are conceptually
simple and have strong provable security properties.
This type of new constructions were started in 2011-2012.
These protocols are shown indeed practical.  We will explain
that all the existing LWE based key exchanges are variants
of this fundamental design.  In addition, we will explain
some issues with key reuse and how to use the signal function
invented for KE for authentication schemes.

Wed, 04 May 2016

11:00 - 12:30
S2.37

Combinatorics in the representation theory of the symmetric group

Kieran Calvert
(Oxford)
Abstract

Since the symmetric group is a finite group it’s representation theory is not too complex, however in this special case we can realise these representations in a particular nice combinatorial way using young tableaux and young symmetrizers. I will introduce these ideas and use them to describe the representation theory of Sn over the complex numbers.

Wed, 20 Jan 2016

11:00 - 12:30
S2.37

Bieberbach's Theorems

Robert Kropholler
(Oxford)
Abstract
I will go through a proof of Bieberbach's theorems proving that a group acting cocompactly on Euclidean n-space has a subgroup consisting of n independent translations. Time permitting I will also prove that there is a bound on the number of such groups for each dimension n. I will assume very little requiring only a small amount of group theory and linear algebra for the proofs. 
Wed, 02 Dec 2015

11:30 - 12:30
S2.37

Representation Dimension and Quasihereditary algebras

Teresa Conde
(Oxford)
Abstract


The representation dimension of an algebra was introduced in the early 70's by M. Auslander, with the goal of measuring how far an algebra is from having finite number of finitely generated indecomposable modules (up to isomorphism). This invariant is not well understood. For instance, it was not until 2002 that O. Iyama proved that every algebra has finite representation dimension. This was done by constructing special quasihereditary algebras. In this talk I will give an introduction to this topic and I shall briefly explain Iyama's construction.

Subscribe to S2.37