Tue, 01 Nov 2022
14:00
L6

Primitive ideals and W-algebras

Lewis Topley
(Bath University)
Abstract

A finite W-algebra is a gadget associated to each nilpotent orbit in a complex semisimple Lie algebra g. There is a functor from W-modules to a full subcategory of g-modules, known as Skryabin’s equivalence, and every primitive ideals of the enveloping algebra U(g) as the annihilator of a module obtained in this way. This gives a convenient way of organising together primitive ideals in terms of nilpotent orbits, and this approach has led to a resurgence of interest in some hard open problems which lay dormant for some 20 years. The primitive ideals of U(g) which come from one-dimensional representations of W-algebras are especially nice, and we shall call them Losev—Premet ideals. The goal of this talk is to explain my recent work which seeks to: (1) describe the structure of the space of the dimensional representations of a finite W-algebra and (2) classify the Losev—Premet ideals.

Mon, 04 Feb 2019
14:15
L4

Gluing methods for Vortex dynamics in Euler flows

Manuel del Pino
(Bath University)
Abstract

We consider the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. We construct smooth solutions with concentrated vorticities around $k$ points which evolve according to the Hamiltonian system for the Kirkhoff-Routh energy,  using an outer-inner solution gluing approach. The asymptotically singular profile  around each point resembles a scaled finite mass solution of Liouville's equation.
We also discuss the {\em vortex filament conjecture} for the three-dimensional case. This is joint work with Juan D\'avila, Monica Musso and Juncheng Wei.

 

Thu, 24 Aug 2017

11:30 - 12:30
L6

Quivers and Conformal Field Theory: preprojective algebras and beyond.

Alastair King
(Bath University)
Abstract

Abstract: I will describe how the ADE preprojective algebras appear in 
certain Conformal Field Theories, namely SU(2) WZW models, and explain
the generalisation to the SU(3) case, where 'almost CY3' algebras appear.

Thu, 11 Feb 2016

14:00 - 15:00
L5

Tensor product approach for solution of multidimensional differential equations

Dr. Sergey Dolgov
(Bath University)
Abstract

Partial differential equations with more than three coordinates arise naturally if the model features certain kinds of stochasticity. Typical examples are the Schroedinger, Fokker-Planck and Master equations in quantum mechanics or cell biology, as well as quantification of uncertainty.
The principal difficulty of a straightforward numerical solution of such equations is the `curse of dimensionality': the storage cost of the discrete solution grows exponentially with the number of coordinates (dimensions).

One way to reduce the complexity is the low-rank separation of variables. One can see all discrete data (such as the solution) as multi-index arrays, or tensors. These large tensors are never stored directly.
We approximate them by a sum of products of smaller factors, each carrying only one of the original variables. I will present one of the simplest but powerful of such representations, the Tensor Train (TT) decomposition. The TT decomposition generalizes the approximation of a given matrix by a low-rank matrix to the tensor case. It was found that many interesting models allow such approximations with a significant reduction of storage demands.

A workhorse approach to computations with the TT and other tensor product decompositions is the alternating optimization of factors. The simple realization is however prone to convergence issues.
I will show some of the recent improvements that are indispensable for really many dimensions, or solution of linear systems with non-symmetric or indefinite matrices.

Subscribe to Bath University