Fri, 25 Feb 2022

14:00 - 15:00
L6

Multiscale Modeling of Layered Anisotropic Stratified Turbulence

Greg Chini
(University of New Hampshire)
Abstract

Stably density stratified shear flows arise widely in geophysical settings. Instabilities of these flows occur on scales that are too small to be directly resolved in numerical simulations, e.g., of the oceans and atmosphere, yet drive diabatic mixing events that often exert a controlling influence on much larger-scale processes. In the limit of strong stratification, the flows are characterized by the emergence of highly anisotropic layer-like structures with much larger horizontal than vertical scales. Owing to their relative horizontal motion, these structures are susceptible to stratified shear instabilities that drive spectrally non-local energy transfers. To efficiently describe the dynamics of this ``layered anisotropic stratified turbulence'' regime, a multiple-scales asymptotic analysis of the non-rotating Boussinesq equations is performed. The resulting asymptotically-reduced equations are shown to have a generalized quasi-linear (GQL) form that captures the essential physics of strongly stratified shear turbulence. The model is used to investigate the mixing efficiency of certain exact coherent states (ECS) arising in strongly stratified Kolmogorov flow. The ECS are computed using a new methodology for numerically integrating slow--fast GQL systems that obviates the need to explicitly resolve the fast dynamics associated with the stratified shear instabilities by exploiting an emergent marginal stability constraint.

Fri, 16 Oct 2015
14:15
C3

Turbulence in shear flows with and without surface waves

Greg Chini
(University of New Hampshire)
Abstract

Surface waves modify the fluid dynamics of the upper ocean not only through wave breaking but also through phase-averaged effects involving the surface-wave Stokes drift velocity. Chief among these rectified effects is the generation of a convective flow known as Langmuir circulation (or “Langmuir turbulence”). Like stress-driven turbulence in the absence of surface waves, Langmuir turbulence is characterized by streamwise-oriented quasi-coherent roll vortices and streamwise streaks associated with spanwise variations in the streamwise flow. To elucidate the fundamental differences between wave-free (shear) and wave-catalyzed (Langmuir) turbulence, two separate asymptotic theories are developed in parallel. First, a large Reynolds number analysis of the Navier–Stokes equations that describes a self-sustaining process (SSP) operative in linearly stable wall-bounded shear flows is recounted. This theory is contrasted with that emerging from an asymptotic reduction in the strong wave-forcing limit of the Craik–Leibovich (CL) equations governing Langmuir turbulence. The comparative analysis reveals important structural and dynamical differences between the SSPs in shear flows with and without surface waves and lends further support to the view that Langmuir turbulence in the upper ocean is a distinct turbulence regime. 

Subscribe to University of New Hampshire