Thu, 18 Feb 2016

16:00 - 17:30
L4

A pathwise dynamic programming approach to nonlinear option pricing

Christian Bender
(Department of Mathematics Saarland university)
Abstract

In this talk, we present a pathwise method to construct confidence 
intervals on the value of some discrete time stochastic dynamic 
programming equations, which arise, e.g., in nonlinear option pricing 
problems such as credit value adjustment and pricing under model 
uncertainty. Our method generalizes the primal-dual approach, which is 
popular and well-studied for Bermudan option pricing problems. In a 
nutshell, the idea is to derive a maximization problem and a 
minimization problem such that the value processes of both problems 
coincide with the solution of the dynamic program and such that 
optimizers can be represented in terms of the solution of the dynamic 
program. Applying an approximate solution to the dynamic program, which 
can be precomputed by any algorithm, then leads to `close-to-optimal' 
controls for these optimization problems and to `tight' lower and upper 
bounds for the value of the dynamic program, provided that the algorithm 
for constructing the approximate solution was `successful'. We 
illustrate the method numerically in the context of credit value 
adjustment and pricing under uncertain volatility.
The talk is based on joint work with C. Gärtner, N. Schweizer, and J. 
Zhuo.

Subscribe to Department of Mathematics Saarland university