Thu, 05 Mar 2020
16:00
L6

Dynamical systems for arithmetic schemes

Christopher Deninger
(University of Muenster)
Abstract

We construct a functor from arithmetic schemes (and dominant morphisms) to dynamical systems which allows to recover the Hasse-Weil zeta function of a scheme as a Ruelle type zeta function of the corresponding dynamical system. We state some further properties of this correspondence and explain the relation to the work of Kucharczyk and Scholze who realize the Galois groups of fields containing all roots of unity as (etale) fundamental groups of certain topological spaces. We also explain the main reason why our dynamical systems are not yet the right ones and in what regard they need to be refined.
 

Tue, 26 Feb 2019
16:00
L1

Geometric model theory in separably closed valued fields

Martin Hils
(University of Muenster)
Further Information

joint work with Moshe Kamensky and Silvain Rideau

Abstract

Let $p$ be a fixed prime number and let $SCVF_p$ be the theory of separably closed non-trivially valued fields of
characteristic $p$. In the talk, we will see that, in many ways, the step from $ACVF_{p,p}$ to $SCVF_p$ is not more
complicated than the one from $ACF_p$ to $SCF_p$.

At a basic level, this is true for quantifier elimination (Delon), for which it suffices to add parametrized $p$-coordinate
functions to any of the usual languages for valued fields. It follows that all completions are NIP.

At a more sophisticated level, in finite degree of imperfection, when a $p$-basis is named or when one just works with
Hasse derivations, the imaginaries of $SCVF_p$ are not more complicated than the ones in $ACVF_{p,p}$, i.e., they are
classified by the geometric sorts of Haskell-Hrushovski-Macpherson. The latter is proved using prolongations. One may
also use these to characterize the stable part and the stably dominated types in $SCVF_p$, and to show metastability.

Thu, 10 Nov 2016

14:00 - 15:00
L4

Derived Hecke algebras

Prof. Peter Schneider
(University of Muenster)
Abstract

The smooth representation theory of a p-adic reductive group G

with characteristic zero coefficients is very closely connected to the

module theory of its (pro-p) Iwahori-Hecke algebra H(G). In the modular

case, where the coefficients have characteristic p, this connection

breaks down to a large extent. I will first explain how this connection

can be reinstated by passing to a derived setting. It involves a certain

differential graded algebra whose zeroth cohomology is H(G). Then I will

report on a joint project with

R. Ollivier in which we analyze the higher cohomology groups of this dg

algebra for the group G = SL_2.

Subscribe to University of Muenster