Mon, 22 Jan 2024
15:30

Surface automorphisms and elementary number theory

Greg McShane
(Universite Grenoble-Alpes)
Abstract
The modular surface $\mathbb{H}/\Gamma,\, \Gamma= \mathrm{SL}(2,\mathbb{Z})$ has many covers - for example the three punctured torus $\mathbb{H}/\Gamma(2)$ and the once punctured torus $\mathbb{H}/\Gamma'$. We will discuss how classical Diophantine approximation can be interpreted in terms of the behaviour of geodesics on the once punctured torus and a geometric reformulation of the Frobenius uniqueness conjecture.
We will then give an account of two theorems of Fermat in terms of   the automorphisms of $\mathbb{H}/\Gamma(2)$:
- if $p$ is a prime such that $4|(p-1)$ then  can be written as a   sum of squares $p = c^2 + d^2$
- if $p$ is a prime such that $3|(p-1)$ then  can be written as  $  p = c^2 +cd +  d^2$
Finally we will discuss possible extensions to surfaces of the for  m $\mathbb{H}/\Gamma_0(N)$.
 
Tue, 10 Mar 2020
14:15
L4

An uncountable Mittag-Leffler condition with applications to p-adic locally convex vector spaces

Andrea Pulita
(Universite Grenoble-Alpes)
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

Mon, 27 Nov 2017

16:00 - 17:00
L4

Homogenization of the eigenvalues of the Neumann-Poincaré operator

Charles Dapogny
(Universite Grenoble-Alpes)
Abstract

In this presentation, we investigate the spectrum of the Neumann-Poincaré operator associated to a periodic distribution of small inclusions with size ε, and its asymptotic behavior as the parameter ε vanishes. Combining techniques pertaining to the fields of homogenization and potential theory, we prove that the limit spectrum is composed of the `trivial' eigenvalues 0 and 1, and of a subset which stays bounded away from 0 and 1 uniformly with respect to ε. This non trivial part is the reunion of the Bloch spectrum, accounting for the collective resonances between collections of inclusions, and of the boundary layer spectrum, associated to eigenfunctions which spend a not too small part of their energies near the boundary of the macroscopic device. These results shed new light about the homogenization of the voltage potential uε caused by a given source in a medium composed of a periodic distribution of small inclusions with an arbitrary (possibly negative) conductivity a surrounded by a dielectric medium, with unit conductivity.

Mon, 06 Mar 2017

15:45 - 16:45
L3

Percolation of random nodal lines

DAMIEN GAYET
(Universite Grenoble-Alpes)
Abstract

If we fix a rectangle in the affine real space and if we choose at random a real polynomial with given degree d, the probability P(d) that a component of its vanishing locus crosses the rectangle in its length is clearly positive. But is P(d) uniformly bounded from below when d increases? I will explain a positive answer to a very close question involving real analytic functions. This is a joint work with Vincent Beffara.

 

Subscribe to Universite Grenoble-Alpes