Thu, 18 Jan 2024

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A preconditioner with low-rank corrections based on the Bregman divergence

Andreas Bock
(Danish Technical University)
Abstract

We present a general framework for preconditioning Hermitian positive definite linear systems based on the Bregman log determinant divergence. This divergence provides a measure of discrepancy between a preconditioner and a target matrix, giving rise to

the study of preconditioners given as the sum of a Hermitian positive definite matrix plus a low-rank correction. We describe under which conditions the preconditioner minimises the $\ell^2$ condition number of the preconditioned matrix, and obtain the low-rank 

correction via a truncated singular value decomposition (TSVD). Numerical results from variational data assimilation (4D-VAR) support our theoretical results.

 

We also apply the framework to approximate factorisation preconditioners with a low-rank correction (e.g. incomplete Cholesky plus low-rank). In such cases, the approximate factorisation error is typically indefinite, and the low-rank correction described by the Bregman divergence is generally different from one obtained as a TSVD. We compare these two truncations in terms of convergence of the preconditioned conjugate gradient method (PCG), and show numerous examples where PCG converges to a small tolerance using the proposed preconditioner, whereas PCG using a TSVD-based preconditioner fails. We also consider matrices arising from interior point methods for linear programming that do not admit such an incomplete factorisation by default, and present a robust incomplete Cholesky preconditioner based on the proposed methodology.

The talk is based on papers with Martin S. Andersen (DTU).

 

Thu, 21 Feb 2019

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Tomographic imaging with flat-field uncertainty

Prof Martin Skovgaard Andersen
(Danish Technical University)
Abstract

Classical methods for X-ray computed tomography (CT) are based on the assumption that the X-ray source intensity is known. In practice, however, the intensity is measured and hence uncertain. Under normal circumstances, when the exposure time is sufficiently high, this kind of uncertainty typically has a negligible effect on the reconstruction quality. However, in time- or dose-limited applications such as dynamic CT, this uncertainty may cause severe and systematic artifacts known as ring artifacts.
By modeling the measurement process and by taking uncertainties into account, it is possible to derive a convex reconstruction model that leads to improved reconstructions when the signal-to-noise ratio is low. We discuss some computational challenges associated with the model and illustrate its merits with some numerical examples based on simulated and real data.

Subscribe to Danish Technical University