Thu, 20 Jun 2019

16:00 - 17:30
L2

A generic construction for high order approximation schemes of semigroups using random grids

Aurélien Alfonsi
(Ecole des Ponts ParisTech)
Abstract

Our aim is to construct high order approximation schemes for general 
semigroups of linear operators $P_{t},t \ge 0$. In order to do it, we fix a time 
horizon $T$ and the discretization steps $h_{l}=\frac{T}{n^{l}},l\in N$ and we suppose
that we have at hand some short time approximation operators $Q_{l}$ such
that $P_{h_{l}}=Q_{l}+O(h_{l}^{1+\alpha })$ for some $\alpha >0$. Then, we
consider random time grids $\Pi (\omega )=\{t_0(\omega )=0<t_{1}(\omega 
)<...<t_{m}(\omega )=T\}$ such that for all $1\le k\le m$, $t_{k}(\omega 
)-t_{k-1}(\omega )=h_{l_{k}}$ for some $l_{k}\in N$, and we associate the approximation discrete 
semigroup $P_{T}^{\Pi (\omega )}=Q_{l_{n}}...Q_{l_{1}}.$ Our main result is the 
following: for any approximation order $\nu $, we can construct random grids $\Pi_{i}(\omega )$ and coefficients 
$c_{i}$, with $i=1,...,r$ such that $P_{t}f=\sum_{i=1}^{r}c_{i} E(P_{t}^{\Pi _{i}(\omega )}f(x))+O(n^{-\nu})$
with the expectation concerning the random grids $\Pi _{i}(\omega ).$ 
Besides, $Card(\Pi _{i}(\omega ))=O(n)$ and the complexity of the algorithm is of order $n$, for any order
of approximation $\nu$. The standard example concerns diffusion 
processes, using the Euler approximation for $Q_l$.
In this particular case and under suitable conditions, we are able to gather the terms in order to produce an estimator of $P_tf$ with 
finite variance.
However, an important feature of our approach is its universality in the sense that
it works for every general semigroup $P_{t}$ and approximations.  Besides, approximation schemes sharing the same $\alpha$ lead to
the same random grids $\Pi_{i}$ and coefficients $c_{i}$. Numerical illustrations are given for ordinary differential equations, piecewise 
deterministic Markov processes and diffusions.

Subscribe to Ecole des Ponts ParisTech