Tue, 02 Dec 2025
16:00
C3

TBC

Itamar Vigdorovich
(UCSD)
Abstract

to follow

Mon, 24 Nov 2025
16:00
C3

Large deviations for the Riemann zeta function on the critical line

Nathan Creighton
(University of Oxford)
Abstract

In this talk, I will give an account of the measure of large values where |ζ(1/2 + it)| > exp(V), with t ∈ [T,2T] and V ∼ αloglogT. This is the range that influences the moments of the Riemann zeta function. I will present previous results on upper bounds by Arguin and Bailey, and new lower bounds in a soon to be completed paper, joint with Louis-Pierre Arguin, and explain why, with current machinery, the lower bound is essentially optimal. Time permitting, I will also discuss adaptations to other families of L-functions, such as the central values of primitive characters with a large common modulus.

Mon, 17 Nov 2025
16:00
C3

Special L-values and Non-split Extensions of Hodge Structures

Michael Cheng
(University of Oxford)
Abstract

The Deligne-Beilinson conjecture predicts that the special values of many L-functions are related to the ranks of certain Ext groups in the category of mixed Hodge structures. In this talk, we present Skinner’s constructions of certain extensions that are extracted from the cohomology of the modular curve using CM points and the Eisenstein series. Through an explicit analytic calculation, which is performed in the adelic setting using (g,K)-cohomology and Tate’s zeta integrals, we obtain a formula relating the non-triviality of these extensions to the well-known non-vanishing at s=1 of the L-functions associated to Hecke characters of imaginary quadratic fields. These constructions have natural analogs in the category of p-adic Galois representations which are useful for Euler systems.

Mon, 10 Nov 2025
16:00
C3

Calabi-Yau Threefolds, Counting Points and Physics

Eleonora Svanberg
(University of Oxford)
Abstract

For families of Calabi-Yau threefolds, we derive an explicit formula to count the number of points over $\mathbb{F}_{q}$ in terms of the periods of the holomorphic three-form, illustrated by the one-parameter mirror quintic and the 5-parameter Hulek-Verrill family. The formula holds for conifold singularities and naturally incorporates p-adic zeta values, the Yukawa coupling and modularity in the local zeta function. I will give a brief introduction on the physics motivation and how this framework links arithmetic, geometric and physics.

Mon, 03 Nov 2025
16:00
C3

Abelian number fields with restricted ramification and rational points on stacks

Julie Tavernier
(University of Bath)
Abstract

A conjecture by Malle gives a prediction for the number of number fields of bounded discriminant. In this talk I will give an asymptotic formula for the number of abelian number fields of bounded height whose ramification type has been restricted to lie in a given subset of the Galois group and provide an explicit formula for the leading constant. I will then describe how counting these number fields can be viewed as a problem of counting rational points on the stack BG and how the existence of such number fields is controlled by a Brauer-Manin obstruction. No prior knowledge of stacks is needed for this talk!

Mon, 03 Nov 2025
16:00
C3

TBC

Julie Tavernier
(University of Bath)
Abstract

TBC

Mon, 27 Oct 2025
16:00
C3

On the distribution of very short character sums

Paweł Nosal
(University of Warwick)
Abstract
In their paper concerning quadratic residues Davenport and Erdős show that normalized sums of Legendre symbols $(\tfrac{n}{p})$ of suitable length $H(p) = p^{o(1)}$, with uniformly random starting point $X \in [0,...,p-1]$ obey the Central Limit Theorem, as the size of prime conductor goes to infinity.  
 
Recently, Basak, Nath and Zaharescu proved that the CLT still holds, if we pick $X$ uniformly at random from $[0,...,(\log p)^A], A>1$ , set $H(p) = (\log p)^{o(1)}$ and take the limit along full density subset of primes.  
 
In this talk, I will present a modification of their approach, inspired by the work of Harper on short character sums over moving intervals. This allows us to obtain the CLT of this type with $X$ uniformly random from $[0,...,g(p)]$ with practically arbitrary $g(p) \ll p^{\epsilon}$ for all $\epsilon >0$.
Mon, 20 Oct 2025
16:00
C3

An application of Goursat’s Lemma to the irreducibility of Galois representations

Zachary Feng
(University of Oxford)
Abstract
Goursat’s Lemma is an elementary, but perhaps niche, result in group theory classifying subdirect products of the product of two groups. In this talk, I will review what this lemma says, and describe how it can be used to deduce the irreducibility of Galois representations.

 
Mon, 13 Oct 2025
16:00
C3

Eigenvalues of non-backtracking matrices

Cedric Pilatte
(Mathematical Insitute, Oxford)
Abstract
Understanding the eigenvalues of the adjacency matrix of a (possibly weighted) graph is a problem arising in various fields of mathematics. Since a direct computation of the spectrum is often too difficult, a common strategy is to instead study the trace of a high power of the matrix, which corresponds to a high moment of the eigenvalues. The utility of this method comes from its combinatorial interpretation: the trace counts the weighted, closed walks of a given length within the graph.
 
However, a common obstacle arises when these walk-counts are dominated by trivial "backtracking" walks—walks that travel along an edge and immediately return. Such paths can mask the more meaningful structural properties of the graph, yielding only trivial bounds.
 
This talk will introduce a powerful tool for resolving this issue: the non-backtracking matrix. We will explore the fundamental relationship between its spectrum and that of the original matrix. This technique has been successfully applied in computer science and random graph theory, and it is a key ingredient in upcoming work on the 2-point logarithmic Chowla conjecture.
Tue, 04 Nov 2025
12:30
C3

How General Relativity shapes our universe

Alice Luscher, Mathematical Physics
Abstract

Einstein’s theory of general relativity reshaped our understanding of the universe. Instead of thinking of gravity as a force, Einstein showed it is the bending and warping of space and time caused by mass and energy. This radical idea not only explained how planets orbit stars, but also opened the door to astonishing predictions. In this seminar we will explore some of its most fascinating consequences from the expansion of the universe, to gravitational waves, and the existence of black holes.

Subscribe to C3