Level Sets of Persistent Homology for Point Clouds
Abstract
Persistent homology (PH) is an operation which, loosely speaking, describes the different holes in a point cloud via a collection of intervals called a barcode. The two most frequently used variants of persistent homology for point clouds are called Čech PH and Vietoris-Rips PH. How much information is lost when we apply these kinds of PH to a point cloud? We investigate this question by studying the subspace of point clouds with the same barcodes under these operations. We establish upper and lower bounds on the dimension of this space, and find that the question of when the persistence map is identifiable has close ties to rigidity theory. For example, we show that a generic point cloud being locally identifiable under Vietoris-Rips persistence is equivalent to a certain graph being rigid on the same point cloud.
Exploring partition diversity in complex networks
Abstract
Partition diversity refers to the concept that for some networks there may be multiple, similarly plausible ways to group the nodes, rather than one single best partition. In this talk, I will present two projects that address this idea from different but complementary angles. The first introduces the benchmark stochastic cross-block model (SCBM), a generative model designed to create synthetic networks with two distinct 'ground-truth' partitions. This allows us to study the extent to which existing methods for partition detection are able to reveal the coexistence of multiple underlying structures. The second project builds on this benchmark and paves the way for a Bayesian inference framework to directly detect coexisting partitions in empirical networks. By formulating this model as a microcanonical variant of the SCBM, we can evaluate how well it fits a given network compared to existing models. We find that our method more reliably detects partition diversity in synthetic networks with planted coexisting partitions, compared to methods designed to detect a single optimal partition. Together, the two projects contribute to a broader understanding of partition diversity by offering tools to explore the ambiguity of network structure.
14:00
Social Interactions in Chimpanzees
Abstract
16:00
The largest AF-ideal in certain crossed products
Abstract
In this talk from Alexander Ravnanger, he provides a dynamical description of the largest AF-ideal in certain crossed products by the integers. In the case of the uniform Roe algebra of the integers, this reveals an interesting connection to a well-studied object in topological semigroup theory. On the way, he gives an overview of what is known about the abundance of projections in such crossed products, the structure of the simple quotients, and concepts of low-dimensionality for uniform Roe algebras.
16:00
16:00
AF-embeddability of decomposition rank 1 algebras.
Abstract
AF-embeddability, i.e., the question whether a given C*-algebra can be realised as a subalgebra of an AF-algebra, has been studied for a long time with prominent early results by Pimsner and Voicuescu who constructed such embeddings for irrational rotation algebras in 1980. Since then, many AF-embeddings have been constructed for concrete examples but also many non-constructive AF-embeddability results have been obtained for classes of algebras typically assuming the UCT.
In this talk by Joachim Zacharias, we will consider a separable unital C*-algebra A of decomposition rank at most 1 and construct from a suitable system of 1-decomposable cpc-approximations an AF-algebra E together with an embedding of A into E and a conditional expectation of E onto A without assuming the UCT. We also consider some extensions of this inclusion and indicate some applications.