Tue, 11 Feb 2025
16:00
C3

Homology and K-theory for self-similar group actions

Alistair Miller
(University of Southern Denmark)
Abstract

Self-similar groups are groups of automorphisms of infinite rooted trees obeying a simple but powerful rule. Under this rule, groups with exotic properties can be generated from very basic starting data, most famously the Grigorchuk group which was the first example of a group with intermediate growth.

Nekrashevych introduced a groupoid and a C*-algebra for a self-similar group action on a tree as models for some underlying noncommutative space for the system. Our goal is to compute the K-theory of the C*-algebra and the homology of the groupoid. Our main theorem provides long exact sequences which reduce the problems to group theory. I will demonstrate how to apply this theorem to fully compute homology and K-theory through the example of the Grigorchuk group.

This is joint work with Benjamin Steinberg.

Tue, 04 Feb 2025
16:00
C3

Equivariant correspondences

Kenny de Commer
(VUB)
Abstract

Given two von Neumann algebras A,B with an action by a locally compact (quantum) group G, one can consider its associated equivariant correspondences, which are usual A-B-correspondences (in the sense of Connes) with a compatible unitary G-representation. We show how the category of such equivariant A-B-correspondences carries an analogue of the Fell topology, which is preserved under natural operations (such as crossed products or equivariant Morita equivalence). If time permits, we will discuss one particular interesting example of such a category of equivariant correspondences, which quantizes the representation category of SL(2,R). This is based on joint works with Joeri De Ro and Joel Dzokou Talla. 

Tue, 03 Dec 2024
16:00
C3

The space of traces of certain discrete groups

Raz Slutsky
(University of Oxford)
Abstract

A trace on a group is a positive-definite conjugation-invariant function on it. These traces correspond to tracial states on the group's maximal  C*-algebra. In the past couple of decades, the study of traces has led to exciting connections to the rigidity, stability, and dynamics of groups. In this talk, I will explain these connections and focus on the topological structure of the space of traces of some groups. We will see the different behaviours of these spaces for free groups vs. higher-rank lattices, and how our strategy for the free group can be used to answer a question of Musat and Rørdam regarding free products of matrix algebras. This is based on joint works with Arie Levit, Joav Orovitz, and Itamar Vigdorovich.

Tue, 29 Oct 2024

14:00 - 15:00
C3

One, two, tree: counting trees in graphs and some applications

Karel Devriendt
(Mathematical Institute (University of Oxford))
Abstract

Kirchhoff's celebrated matrix tree theorem expresses the number of spanning trees of a graph as the maximal minor of the Laplacian matrix of the graph. In modern language, this determinantal counting formula reflects the fact that spanning trees form a regular matroid. In this talk, I will give a short historical overview of the tree-counting problem and a related quantity from electrical circuit theory: the effective resistance. I will describe a characterization of effective resistances in terms of a certain polytope and discuss some recent applications to discrete notions of curvature on graphs. More details can be found in the recent preprint: https://arxiv.org/abs/2410.07756

Thu, 21 Nov 2024

11:00 - 12:00
C3

Almost sure convergence to a constant for a mean-aggregated term language

Sam Adam-Day
(University of Oxford)
Abstract
With motivation coming from machine learning, we define a term language on graphs generalising many graph neural networks. Our main result is that the closed terms of this language converge almost surely to constants. This probabilistic result holds for Erdős–Rényi graphs for a variety of sparsity levels, as well as the Barabási–Albert preferential attachment graph distribution. The key technique is a kind of almost sure quantifier elimination. A natural extension of this language generalises first-order logic, and a similar convergence result can be obtained there.
 
Mon, 02 Dec 2024
16:00
C3

TBC

Leo Gitin
(University of Oxford)
Abstract

TBC

Mon, 25 Nov 2024
16:00
C3

Gap distributions and the Metric Poissonian Property 

Sophie Maclean
(King's College London)
Abstract
When studying dilated arithmetic sequences, it is natural to wonder about their distribution. Whilst it is relatively achievable to ascertain whether the resulting sequence is equidistributed, is it much more difficult to say much about gap size between consecutive elements of the new set? In this talk I will explore the gap distributions in dilated arithmetic sequences modulo 1, including what it means for a sequence to have the metric poissonian property. I will also give an overview of the current progress and what I am aiming to discover in my own work.
 
 
Mon, 21 Oct 2024
16:00
C3

Monochromatic non-commuting products

Matt Bowen
(University of Oxford)
Abstract

We show that any finite coloring of an amenable group contains 'many' monochromatic sets of the form $\{x,y,xy,yx\},$ and natural extensions with more variables.  This gives the first combinatorial proof and extensions of Bergelson and McCutcheon's non-commutative Schur theorem.  Our main new tool is the introduction of what we call `quasirandom colorings,' a condition that is automatically satisfied by colorings of quasirandom groups, and a reduction to this case.

Mon, 14 Oct 2024
16:00
C3

Self-Similar Sets and Self-Similar Measures

Constantin Kogler
(University of Oxford)
Abstract

We give a gentle introduction to the theory of self-similar sets and self-similar measures. Connections of this topic to Diophantine approximation on Lie groups as well as to additive combinatorics will be exposed. In particular, we will discuss recent progress on Bernoulli convolutions. If time permits, we mention recent joint work with Samuel Kittle on absolutely continuous self-similar measures. 
 

Subscribe to C3