Tue, 28 Feb 2023
16:00
C3

Some algebraic aspects of minimal dynamics on the Cantor set

Maryram Hosseini
(Queen Mary, University of London)
Abstract

By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.

Tue, 21 Feb 2023
16:00
C3

On the joint spectral radius

Emmanuel Breuillard
(University of Oxford)
Abstract

The joint spectral radius of a finite family S of matrices measures the rate of exponential growth of the maximal norm of an element from the product set S^n as n grows. This notion was introduced by Rota and Strang in the 60s. It arises naturally in a number of contexts in pure and applied mathematics. I will discuss its basic properties and focus on a formula of Berger and Wang and results of J. Bochi that extend to several matrices the classical for formula of Gelfand that relates the growth rate of the powers of a single matrix to its spectral radius. I give new proofs and derive explicit estimates with polynomial dependence on the dimension, refining these results. If time permits I will also discuss connections with the Tits alternative, the notion of joint spectrum, and a geometric version of these results regarding groups acting on non-positively curved spaces.

Tue, 07 Feb 2023
12:30
C3

Studying occupational mobility using online resume data

Rohit Sahasrabuddhe
Abstract

Data sets of self-reported online resumes are a valuable tool to understand workers' career trajectories and how workers may adapt to the changing demands of employers. However, the sample of workers that choose to upload their resumes online may not be representative of a nation's workforce. To understand the advantages and limitations of these datasets, we analyze a data set of more than 1 Million online resumes and compare the findings with a administrative data from the Current Population Survey (CPS).
 

Tue, 07 Mar 2023
12:30
C3

Mathematical modelling of liquid lithium inside a tokamak fusion reactor

Oliver Bond
Abstract

We model a tokamak fusion reaction, combining Maxwell's equations with the Navier-Stokes equations, the heat equation and the Seebeck effect giving a model of thermoelectric magnetohydrodynamics (TEMHD). At leading order, we showed that the free surface must be flat, that the pressure is constant, and that the temperature decouples from the governing equations relating the fluid velocity and magnetic field. We also find that the fluid flow is driven entirely by the temperature gradient normal to the free surface. Using singular perturbation methods we obtained velocity profiles which exhibit so-called Hartmann layers and thicker side layers. The role of the aspect ratio has been seldom considered in classical MHD duct flow literature as a varying parameter. Here, we show it's importance and derive a relationship between the aspect ratio and Hartmann number that maximises flow rate of fluid down the duct.

Tue, 21 Feb 2023
12:30
C3

Modelling the weathering crust and microbial activity on an ice-sheet surface

Tilly Woods
Abstract

Shortwave radiation penetrating beneath an ice-sheet surface can cause internal melting and the formation of a near-surface porous layer known as the weathering crust, a dynamic hydrological system that provides home to impurities and microbial life. We develop a mathematical model, incorporating thermodynamics and population dynamics, for the evolution of such layers. The model accounts for conservation of mass and energy, for internal and surface-absorbed radiation, and for logistic growth of a microbial species mediated by nutrients that are sourced from the melting ice. I will discuss one-dimensional steadily melting solutions of the model, which suggest a range of changes in behaviour of the weathering crust and its microbial community in response to climate change. In addition, time-dependent solutions of the model give insight into the formation and removal of the weathering crust in frequently changing weather conditions.

Tue, 16 May 2023
12:30
C3

Structure-Preserving Finite-Element Methods for Inhomogeneous and Time-Dependent PDEs

Boris Andrews
Abstract

PDEs frequently exhibit certain physical structures that guide their behaviour, e.g. energy/helicity dissipation, Hamiltonians, and material conservation. Preserving these structures during numerical discretisation is essential.

Although the finite-element method has proven powerful in constructing such models, incorporating inhomogeneous(/non-zero) boundary conditions has been a significant challenge. We propose a technique that addresses this issue, deriving structure-preserving models for diverse inhomogeneous problems.

Moreover, this technique enables the derivation of novel structure-preserving timesteppers for time-dependent problems. Analogies can be drawn with the other workhorse of modern structure-preserving methods: symplectic integrators.

Tue, 24 Jan 2023
12:30
C3

Onsager's conjecture for energy conservation

Samuel Charles
Abstract

In this talk I will discuss Onsager's conjecture for energy conservation. Moreover, in 1949 Onsager conjectured that weak solutions to the incompressible Euler equations, that were Hölder continuous with Hölder exponent greater than 1/3, conserved kinetic energy. Onsager also conjectured that there were weak solutions that were Hölder continuous with Hölder exponent less than 1/3 that didn't conserve kinetic energy. I will discuss the results regarding the former, focusing mainly on the case where the spacial domain is bounded with C^2 boundary, as proved by Bardos and Titi.

Tue, 14 Feb 2023
16:00
C3

Symmetric Tensor Products: An Operator Theory Approach

Ryan O'Loughlin
(University of Leeds)
Abstract

Although tensor products and their symmetrisation have appeared in mathematical literature since at least the mid-nineteenth century, they rarely appear in the function-theoretic operator theory literature. In this talk, I will introduce the symmetric and antisymmetric tensor products from an operator theoretic point of view. I will present results concerning some of the most fundamental operator-theoretic questions in this area, such as finding the norm and spectrum of the symmetric tensor products of operators. I will then work through some examples of symmetric tensor products of familiar operators, such as the unilateral shift, the adjoint of the shift, and diagonal operators.

Tue, 07 Feb 2023
16:00
C3

Rigidity examples constructed with wreath-like product groups

Bin Sun
(University of Oxford)
Abstract

Wreath-like product groups were introduced recently and used to construct the first positive examples of rigidity conjectures of Connes and Jones. In this talk, I will review those examples, as well as discuss some ideas to construct examples with other rigidity phenomena by modifying the wreath-like product construction.

Subscribe to C3