Thu, 29 Jan 2026
12:45
L6

Algebraic structures in Feynman integrals

Vsevolod Chestnov
Abstract
Feynman integrals are special functions with rich hidden structure: large families satisfy linear relations, finite-rank differential systems, and tightly constrained singular behaviour. This talk surveys frameworks that make these features explicit and computationally useful. Topics include twisted period representations and cohomological perspectives on integral relations, D-module methods for organising differential equations, and commutative-algebra tools for identifying the singular locus (Landau singularities). The emphasis will be on intuition and a few illustrative examples, with brief pointers to ongoing applications in multi-scale amplitude computations.
Further Information

Please submit papers to discuss and topic suggestions here: https://sites.google.com/view/math-phys-oxford/journal-club

Thu, 22 Jan 2026
12:45
L6

On Continuous Families of Conformal Field Theories

Vito Pellizzani
Abstract

I will review an elegant, theory-independent argument that proves the existence of exactly marginal operators in the presence of a conformal manifold. The proof relies on a few technical assumptions, which I will discuss in detail. The rest of the discussion will be phrased in terms of conformal interfaces separating two CFTs on the conformal manifold, which we take as an opportunity to discuss the fundamentals of defect CFTs. The overarching topic into which this result fits is that of proving certain (AdS) swampland conjectures from CFT principles.

Further Information

Please submit papers to discuss and topic suggestions here: https://sites.google.com/view/math-phys-oxford/journal-club

Tue, 17 Feb 2026
16:00
L6

Graph and Chaos Theories Combined to Address Scrambling of Quantum Information (with Arkady Kurnosov and Sven Gnutzmann)

Uzi Smilansky
Abstract

Given a quantum Hamiltonian, represented as an $N \times N$ Hermitian matrix $H$, we derive an expression for the largest Lyapunov exponent of the classical trajectories in the phase space appropriate for the dynamics induced by $H$. To this end we associate to $H$ a graph with $N$ vertices and derive a quantum map on functions defined on the directed edges of the graph. Using the semiclassical approach in the reverse direction we obtain the corresponding classical evolution (Liouvillian) operator. Using ergodic theory methods (Sinai, Ruelle, Bowen, Pollicott\ldots) we obtain closed expressions for the Lyapunov exponent, as well as for its variance. Applications for random matrix models will be presented.

Subscribe to L6