16:00
16:00
15:30
The fiberwise THH transfer and graph characteristic classes with one loop
Abstract
I will report on work joint with Florian Naef in which we produce, for a map f of spaces over a space B such that f has compact fibers, a rational model for the fiberwise transfer of fiberwise topological Hochschild homology, considered as a map of parametrized spectra over B. This is motivated by applications to moduli spaces of manifolds: in particular we can detect the vanishing of certain cohomology classes originating from a graph complex via the classifying space of homotopy automorphisms.
15:30
Taut smoothings and shortest geodesics
Abstract
In this talk we will discuss the connection between combinatorial properties of minimally self-intersecting curves on a surface S and the geometric behaviour of geodesics on S when S is endowed with a Riemannian metric. In particular, we will explain the interplay between a smoothing, which is a type of surgery on a curve that resolves a self-intersection, and k-systoles, which are shortest geodesics having at least k self-intersections, and we will present some results that partially elucidate this interplay. There will be lots of pictures. Based on joint work with Max Neumann-Coto.
16:00
Automorphic L-functions, primon gases and quantum cosmology
Abstract
I will review how the equations of general relativity near a spacetime singularity map onto an arithmetic hyperbolic billiard dynamics. The semiclassical quantum states for this dynamics are Maaβ cusp forms on fundamental domains of modular groups. For example, gravity in four spacetime dimensions leads to PSL(2,Z) while five dimensional gravity leads to PSL(2,Z[w]), with Z[w] the Eisenstein integers. The automorphic forms can be expressed, in a dilatation (Mellin transformed) basis as L-functions. The Euler product representation of these L-functions indicates that these quantum states admit a dual interpretation as a "primon gas" partition function. I will describe some physically motivated mathematical questions that arise from these observations.
(Joint Seminar with Number Theory)
15:30
On the congruence subgroup property for mapping class groups
Abstract
I will relate two notorious open questions in low-dimensional topology. The first asks whether every hyperbolic group is residually finite. The second, the congruence subgroup property, relates the finite-index subgroups of mapping class groups to the topology of the underlying surface. I will explain why, if every hyperbolic group is residually finite, then mapping class groups enjoy the congruence subgroup property. Time permitting, I may give some further applications to the question of whether hyperbolic 3-manifolds are determined by the finite quotients of their fundamental groups.
11:00
Probabilistic Schwarzian Field Theory
Abstract
Schwarzian Theory is a quantum field theory which has attracted a lot of attention in the physics literature in the context of two-dimensional quantum gravity, black holes and AdS/CFT correspondence. It is predicted to be universal and arise in many systems with emerging conformal symmetry, most notably in Sachdev--Ye--Kitaev random matrix model and Jackie--Teitelboim gravity.
In this talk we will discuss our recent progress on developing rigorous mathematical foundations of the Schwarzian Field Theory, including rigorous construction of the corresponding measure, calculation of both the partition function and a natural class of correlation functions, and a large deviation principle.
Distances in colourings of the plane
Abstract
We prove that every finite colouring of the plane contains a monochromatic pair of points at an odd (integral) distance from each other. We will also discuss some further results with Rose McCarty and Michal Pilipczuk concerning prime and polynomial distances.
E∞-algebras and general linear groups
Abstract
I will discuss joint work with S. Galatius and A. Kupers in which we investigate the homology of general linear groups over a ring $A$ by considering the collection of all their classifying spaces as a graded $E_\infty$-algebra. I will first explain diverse results that we obtained in this investigation, which can be understood without reference to $E_\infty$-algebras but which seem unrelated to each other: I will then explain how the point of view of cellular $E_\infty$-algebras unites them.
10:00
Linear Isoperimetric Functions for Surfaces in Hyperbolic Groups
Abstract
One of the main characterisations of word-hyperbolic groups is that they are the groups with a linear isoperimetric function. That is, for a compact 2-complex X, the hyperbolicity of its fundamental group is equivalent to the existence of a linear isoperimetric function for disc diagrams D -->X.
It is likewise known that hyperbolic groups have a linear annular isoperimetric function and a linear homological isoperimetric function. I will talk about these isoperimetric functions, and about a (previously unexplored) generalisation to all homotopy types of surface diagrams. This is joint work with Dani Wise.
12:45
Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula
Abstract
I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states.
In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1
which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro.
In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory
which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy
of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections.
The second part is based on arXiv:1901.08091.