Mon, 13 Feb 2023
13:00
L1

Knot Homologies from Landau Ginsburg Models

Miroslav Rapcak
(Cern)
Abstract

In her recent work, Mina Aganagic proposed novel perspectives on computing knot homologies associated with any simple Lie algebra. One of her proposals relies on counting intersection points between Lagrangians in Landau-Ginsburg models on symmetric powers of Riemann surfaces. In my talk, I am going to present a concrete algebraic algorithm for finding such intersection points, turning the proposal into an actual calculational tool. I am going to illustrate the construction on the example of the sl_2 invariant for the Hopf link. I am also going to comment on the extension of the story to homological invariants associated to gl(m|n) super Lie algebras, solving this long-standing problem. The talk is based on our work in progress with Mina Aganagic and Elise LePage.

Thu, 06 Oct 2022
14:00
N3.12

Gravitational Regge bounds

Kelian Haring
(Cern)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

I will review the basic assumptions and spell out the arguments that lead to the bound on the Regge growth of gravitational scattering amplitudes. I will discuss the Regge bounds both at fixed transfer momentum and smeared over it. Our basic conclusion is that gravitational scattering amplitudes admit dispersion relations with two subtractions. For a sub-class of smeared amplitudes, black hole formation reduces the number of subtractions to one. Finally, I will discuss bounds on local growth derived using dispersion relations. This talk is based on https://arxiv.org/abs/2202.08280.

Fri, 10 Jun 2022

16:00 - 17:00
N4.01

From Gravitational Orbits to Quantum Scars

Matthew Dodelson
(Cern)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

I will describe recent work with Zhibeodov on the boundary interpretation of orbits around an AdS black hole. When the orbits are far away from the black hole, these orbits describe heavy-light double-twist operators on the boundary. I will discuss how the dimensions of these operators can be computed exactly in terms of quasinormal modes in the bulk, using techniques from a paper to appear soon with Grassi, Iossa, Lichtig, and Zhiboedov. Then I will explain how these results are related to the concept of quantum scars, which are eigenstates that do not obey ETH. 

Mon, 13 Jun 2022

12:45 - 13:45
Online

Averaging over approximate CFTs

Alexandre Belin
(Cern)
Further Information

This seminar has been canceled.

Abstract

In this talk, I will investigate the origin of Euclidean wormholes in the gravitational part integral in the context of AdS/CFT. These geometries are confusing since they prevent products of partition functions to factorize, as they should in any quantum mechanical system. I will briefly review the different proposals for the origin of these wormholes, one of which is that one should consider ensemble of average of boundary systems instead of a fixed quantum system with a fixed Hamiltonian. I will explain that it seems unlikely that one can average over CFTs and present a new idea: averaging over approximate CFTs, which I will define. I will then study the variance of the crossing equation in an ensemble relevant for 3d gravity. Based on work in progress with de Boer, Jafferis, Nayak and Sonner.

Mon, 03 May 2021
11:30
Virtual

Probing gravitational EFTs with the four-graviton amplitude

Sasha Zhiboedov
(Cern)
Abstract

We discuss constraints from perturbative unitarity and crossing on the leading contributions of the higher-dimension operators to the four-graviton amplitude in four spacetime dimensions. We focus on the leading order effect due to exchange by massive degrees of freedom which makes the amplitudes of interest IR finite. To test the constraints we obtain nontrivial effective field theory data by computing and taking the large mass expansion of the one-loop minimally-coupled four-graviton amplitude with massive particles up to spin 2 circulating in the loop. Remarkably, the leading EFT corrections to Einstein gravity of physical theories, both string theory and QFT coupled to gravity, end up in minuscule islands which are much smaller than what is suggested by the generic bounds obtained from consistency of the 2-2 graviton scattering amplitude. We discuss the underlying mechanism for this phenomenon.

Mon, 12 Nov 2018
12:45
L3

Tensionless Strings and Quantum Gravity Conjectures

Seung-Joo Lee
(Cern)
Abstract

We test various conjectures on quantum gravity for general 6d string compactifications in the framework of F-theory. Starting with a gauge theory coupled to gravity, we first analyze the limit in Kähler moduli space where the gauge coupling tends to zero while gravity is kept dynamical. A key observation is made about the appearance of a tensionless string in such a limit. For a more quantitative analysis, we focus on a U(1) gauge symmetry and determine the elliptic genus of this string in terms of certain meromorphic weak Jacobi forms, of which modular properties allow us to determine the charge-to-mass ratios of certain string excitations. A tower of these asymptotically massless charged states are then confirmed to satisfy the (sub-)Lattice Weak Gravity Conjecture, the Completeness Conjecture, and the Swampland Distance Conjecture. If time permits, we interpret their charge-to-mass ratios in two a priori independent perspectives. All of this is then generalized to theories with multiple U(1)s.

Mon, 02 Jul 2018
12:45
L1

Supersymmetric partition functions on Seifert manifolds from line defects

Cyril Closset
(Cern)
Abstract

As we have learned over the last 10 years, many exact results for various observables in three-dimensional N=2 supersymmetric theories can be extracted from the computation of "supersymmetric partition functions" on curved three-manifold M_3, for instance on M_3= S^3 the three-sphere. Typically, such computations must be carried anew for each M_3 one might want to consider, and the technical difficulties mounts as the topology of M_3 gets more involved. In this talk, I will explain a different approach that allows us to compute the partition function on "almost" any half-BPS geometry. The basic idea is to relate different topologies by the insertion of certain half-BPS line defects, the "geometry-changing line operators." I will also explain how our formalism can be related to the Beem-Dimofte-Pasquetti holomorphic blocks. [Talk based on a paper to appear in a week, with Heeyeon Kim and Brian Willett.]
 

Thu, 30 Nov 2017
17:00
L3

RG flows in 3d N=4 gauge theories

Benjamin Assel
(Cern)
Abstract

I will present a new approach to study the RG flow in 3d N=4 gauge theories, based on an analysis of the Coulomb branch of vacua. The Coulomb branch is described as a complex algebraic variety and important information about the strongly coupled fixed points of the theory can be extracted from the study of its singularities. I will use this framework to study the fixed points of U(N) and Sp(N) gauge theories with fundamental matter, revealing some surprising scenarios at low amount of matter.

 
Tue, 07 Nov 2017
12:00
L4

Thirty years of transplanckian-energy collisions: where do we stand?

Gabriele Veneziano
(Cern)
Abstract

I will start with a quick reminder of what we have learned so far about
transplanckian-energy collisions of particles, strings and branes.
I will then address the (so-far unsolved) problem of gravitational
bremsstrahlung from massless particle collisions at leading order in the
gravitational deflection angle.
Two completely different calculations, one classical and one quantum, lead
to the same final, though somewhat puzzling, result.

 

Tue, 09 May 2017

12:00 - 13:15
L4

Duality of Wilson loop form factors

Emery Sokatchev
(Cern)
Abstract

We find a new duality  for form factors of lightlike Wilson loops
in planar N=4 super-Yang-Mills theory. The duality maps a form factor
involving a lightlike polygonal super-Wilson loop together with external
on-shell states, to the same type of object  but with the edges of the
Wilson loop and the external states swapping roles.  This relation can
essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace
where it is equivalent to planar graph duality.

Subscribe to Cern