Dr Andreas Muench

Dr Andreas Muench

Dr Andreas Muench

Dr phil, Dipl TU Munich

  • Deputy Director of OCIAM
  • Reader in Applied Mathematics

Personal Web Page

eMail: Andreas [dot] Muench [-at-] maths [dot] ox [dot] ac [dot] uk
Contact Form

Phone Number(s):

Reception: +44 1865 273525
Direct: +44 1865 270517

Fax: +44 1865 270515

Office: S2.07

Departmental Address:

Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
United Kingdom

Research Interests: 

My research combines mathematical modelling with asymptotic as well as numerical methods, such as spectral methods, finite elements and finite differences. I also works on stability analysis and solutions of conservation laws associated with high-order partial differential equations. My fields of application cover problems in fluid and solid mechanics, in particular many coating problems ranging from Marangoni driven flows to problems in nano- and micro-fluidics, and from problems with non-Newtonian rheology to the self-assembly of solid nano-structured thin films. Through my long-term industrial contracts I have also worked on modelling and the numerical simulation of flows of charged particles in an ionic carrier liquid.

The fundamental interest in micro- and nano-scale phenomena as well as the increasing importance of applications of nanomaterials in particular in the energy sector has focussed my recent research on topics such as nanostructuring of evaporative polymer blends and  infiltration of nano-porous media for the optimisation of organic solar cells.

Major/Recent Publications: 
Tobias Ahnert, Andreas Münch, and Barbara Wagner.
Two-phase flow model for concentrated suspensions.
Submitted, 2013.
Oliver Bäumchen, Ludovic Marquant, Ralf Blossey, Andreas Münch, Barbara Wagner, and Karin Jacobs.
Influence of slip on the Rayleigh-Plateau rim instability in dewetting viscous films.
Submitted, 2013.
Matthew G. Hennessy, Victor M. Burlakov, Andreas Münch, Barbara Wagner, and Alain Goriely.
Controlled topological transitions in thin film phase separation.
Submitted, 2013.
Marion Dziwnik, Maciek Korzec, Andreas Münch, and Barbara Wagner.
Stability analysis of non-constant base states in thin film equations.
SIAM Journal on Applied Mathematics, accepted, 2014.
Matthew G. Hennessy and Andreas Münch.
Dynamics of a slowly evaporating solvent-polymer mixture with a deformable upper surface.
OCCAM-Preprint 13/40, submitted, 2013.
Matthew G. Hennessy, Victor M. Burlakov, Andreas Münch, Barbara Wagner, and Alain Goriely.
Propagating topological transformations in thin immiscible bilayer films.
Europhysics Letters , 105, id: 66001, 2014.
[J.LINK]
M. Hennessy, A. Münch.
A multiple scales approach to evaporation induced Marangoni convection.
SIAM Journal on Applied Mathematics, 73(2):974--1001, 2013.
[J.LINK]
M. Korzec, A. Münch, B. Wagner.
Anisotropic surface energy formulations and their effect on stability of a growing thin film
Interfaces and Free Boundaries, 14(4):545-567, 2012.
[J.LINK]
J. Schmidt, R. Prignitz, D. Peschka, A. Münch, B. Wagner, E. Bänsch, W. Peukert.
Conductivity in nonpolar media: Experimental and numerical studies on sodium AOT-hexadecane, lecithin-hexadecane and aluminum(III)-3,5-diisopropyl salicylate-hexadecane systems
Journal of Colloid and Interface Science, 386(1):240-251, 2012.
[J.LINK]
A. Münch, C. P. Please, and B. Wagner.
Spin coating of an evaporating polymer solution.
Physics of Fluids, 23:102101, 2011.
[J.LINK]
D. Peschka, A. Münch and B. Niethammer
Self-similar rupture of viscous thin films in the strong-slip regime.
Nonlinearity, 23(2):409-427, 2010.
[J.LINK]
B. Wagner and A. Münch.
Galerkin method for feedback controlled Rayleigh-Bénard convection.
Nonlinearity, 21:2625-2651, 2008.
[J.LINK]
M. D. Korzec, P. L. Evans, A. Münch and B. Wagner.
Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations
SIAM Journal on Applied Mathematics, 69(2):348-374, 2008.
[J.LINK]
R. Fetzer, A. Münch, B. A. Wagner, M. Rauscher and K. Jacobs.
Quantifying hydrodynamic slip: A comprehensive analysis of dewetting profiles.
Langmuir 23(21): 10559-10566, 2007.
[J.LINK]
J. R. King, A. Münch, and B. Wagner.
Linear stability of a ridge.
Nonlinearity, 19:2813-2831, 2006.
[J.LINK]
R. Blossey, A. Münch, M. Rauscher and B. Wagner.
Slip vs. viscoelasticity in dewetting thin films
European Physical Journal E, 20(3):267-271,2006.
[J.LINK]
P. L. Evans and A. Münch.
Dynamics of a surface-tension-gradient-driven liquid film rising
from a reservoir onto a substrate.
SIAM Journal on Applied Mathematics, 66(5):1610-1631, 2006
[J.LINK]
R. Fetzer, K. Jacobs, A. Münch, B. Wagner, and T. P. Witelski.
New Slip Regimes and the Shape of Dewetting Thin Liquid Films.
Physical Review Letters, 95(12):id: 127801, 2005.
[J.LINK]
A. Münch.
Pinch-off transition in Marangoni-driven thin films.
Physical Review Letters, 91(1):id: 016105, 2003.
[J.LINK]
A. L. Bertozzi, A. Münch, and M. Shearer.
Undercompressive waves in driven thin film flow.
Physica D, 134:431-464, 1999.
[J.LINK]
A. L. Bertozzi, A. Münch, X. Fanton, and A. M. Cazabat.
Contact line stability and `undercompressive shocks' in driven thin film flow.
Physical Review Letters, 81(23):5169-5172, 1998.
[J.LINK]