Forthcoming events in this series


Tue, 16 Jan 2018

12:00 - 13:00
C3

Classifying Conversation in Digital Communication

Andrew Mellor
(University of Oxford)
Abstract

Many studies of digital communication, in particular of Twitter, use natural language processing (NLP) to find topics, assess sentiment, and describe user behaviour.
In finding topics often the relationships between users who participate in the topic are neglected.
We propose a novel method of describing and classifying online conversations using only the structure of the underlying temporal network and not the content of individual messages.
This method utilises all available information in the temporal network (no aggregation), combining both topological and temporal structure using temporal motifs and inter-event times.
This allows us to describe the behaviour of individuals and collectives over time and examine the structure of conversation over multiple timescales.
 

Tue, 28 Nov 2017

12:00 - 13:00
C3

A networks perspective on automation

Maria del Rio Chanona
(University of Oxford)
Abstract

Current technological progress has raised concerns about automation of tasks performed by workers resulting in job losses. Previous studies have used machine learning techniques to compute the automation probability of occupations and thus, studied the impact of automation on employment. However, such studies do not consider second-order effects, for example, an occupation with low automation probability can have a  surplus of labor supply due to similar occupations being automated. In this work, we study such second-order effects of automation using a network approach.  In our network – the Job Space – occupations are nodes and edges link occupations which share a significant amount of work activities. By mapping employment, automation probabilities into the network, and considering the movement of workers, we show that an occupation’s position in the network may be crucial to determining its employment future.

 

Tue, 21 Nov 2017

12:00 - 13:00
C3

Complex Contagions with Timers

Se-Wook Oh
(University of Oxford)
Abstract

A great deal of effort has gone into trying to model social influence --- including the spread of behavior, norms, and ideas --- on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays the adoption --- i.e., change of state --- of each agent, which in turn delays the adoptions of its neighbors. With a homogeneous-distributed timer, in which all nodes exhibit the same amount of delay, adoption delays are also homogeneous, so the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation of the Watts threshold model, and we find good agreement with numerical computations. We also examine our new timer model on networks constructed from empirical data.

Link to arxiv paper: https://arxiv.org/abs/1706.04252

Tue, 14 Nov 2017

12:00 - 13:00
C3

The Temporal Event Graph

Andrew Mellor
(University of Oxford)
Abstract

Temporal networks are increasingly being used to model the interactions of complex systems. 
Most studies require the temporal aggregation of edges (or events) into discrete time steps to perform analysis.
In this article we describe a static, behavioural representation of a temporal network, the temporal event graph (TEG).
The TEG describes the temporal network in terms of both inter-event time and two-event temporal motifs.
By considering the distributions of these quantities in unison we provide a new method to characterise the behaviour of individuals and collectives in temporal networks as well as providing a natural decomposition of the network.
We illustrate the utility of the TEG by providing examples on both synthetic and real temporal networks.

Tue, 07 Nov 2017

12:00 - 13:00
C3

Optimal modularity maximisation in multilayer networks

Roxana Pamfil
(University of Oxford)
Abstract

Identifying clusters or "communities" of densely connected nodes in networks is an active area of research, with relevance to many applications. Recent advances in the field have focused especially on temporal, multiplex, and other kinds of multilayer networks.

One method for detecting communities in multilayer networks is to maximise a generalised version of an objective function known as modularity. Writing down multilayer modularity requires the specification of two types of resolution parameters, and choosing appropriate values is crucial for uncovering meaningful community structure. In the simplest case, there are just two parameters, one controlling the sizes of detected communities, and the other influencing how much communities change from layer to layer. By establishing an equivalence between modularity optimisation and a multilayer maximum-likelihood approach to community detection, we are able to determine statistically optimal values for these two parameters. 

When applied to existing multilayer benchmarks, our optimized approach performs significantly better than using parameter choices guided by heuristics. We also apply the method to supermarket data, revealing changes in consumer behaviour over time.