Forthcoming events in this series


Thu, 24 Nov 2022
14:00
N3.12

Compactification of 6d N=(1,0) quivers, 4d SCFTs and their holographic dual Massive IIA backgrounds

Ricardo Stuardo
(Swansea)
Abstract

We study an infinite family of Massive Type IIA backgrounds that holographically describe the twisted compactification of N=(1,0) six-dimensional SCFTs to four dimensions. The analysis of the branes involved suggests a four dimensional linear quiver QFT, that deconstructs the theory in six dimensions. For the case in which the system reaches a strongly coupled fixed point, we calculate some observables that we compare with holographic results. Two quantities measuring the number of degrees of freedom for the flow across dimensions are studied.

Thu, 17 Nov 2022
14:00
L6

Dispersive Sum Rules in AdS${}_2$

Waltraut Knop
(Stony Brook)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Dispersion relations for S-matrices and CFT correlators translate UV consistency into bounds on IR observables. In this talk, I will begin with briefly introducing dispersionrelations in 2D flat space which will guide the analogous discussion in AdS2/CFT1. I will introduce a set of functionals acting on the 1D CFT. These will allow us to prove bounds on higher-derivative couplings in weakly coupled non-gravitational EFTs in AdS2. At the leading order in the bulk-point limit, the bounds agree with the flat-space result. Furthermore we can compute the leading universal effect of finite AdS radius on the bounds.

Thu, 10 Nov 2022
14:00
S1.37

Non-invertible Symmetries in 5d Chern-Simons theories

Eduardo Garcia-Valdecasas
(Harvard)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.

Thu, 03 Nov 2022
13:45
N3.12

Uniqueness of supersymmetric AdS$_5$ black holes

Sergei G. Ovchinnikov
(Edinburgh University)
Abstract

The classification of anti de Sitter black holes is an open problem of central importance in holography. In this talk, I will present new advances in classification of supersymmetric solutions to five-dimensional minimal gauged supergravity. In particular, we prove a black hole uniqueness theorem within a ‘Calabi-type’ subclass of solutions with biaxial symmetry. This subclass includes all currently known black hole solutions within this theory.

Thu, 20 Oct 2022
14:00
L6

A tale of 2-groups: Dp(USp(2N)) theories

Alessandro Mininno
(Universität Hamburg)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

After a brief introduction, I elucidate a technique, dubbed "bootstrap'', which generates an infinite family of D_p(G) theories, where for a given arbitrary group G and a parameter b, each theory in the same family has the same number of mass parameters, same number of marginal deformations, same 1-form symmetry, and same 2-group structure. This technique is utilized to establish the presence or absence of the 2-group symmetries in several classes of D_p(G) theories. I, then, argue that we found the presence of 2-group symmetries in a class of Argyres-Douglas theories, called D_p(USp(2N)), which can be realized by Z_2-twisted compactification of the 6d N=(2,0) of the D-type on a sphere with an irregular twisted puncture and a regular twisted full puncture. I will also discuss the 3d mirror theories of general D_p(USp(2N)) theories that serve as an important tool to study their flavor symmetry and Higgs branch.

Thu, 13 Oct 2022
14:00
L6

1-form symmetry versus large N QCD

Theodore Jacobson
(University of Minnesota)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

It has long been appreciated that in QCD-like theories without fundamental matter, confinement can be given a sharp characterization in terms of symmetry. More recently, such symmetries have been identified as 1-form symmetries, which fit into the broader category of generalized global symmetries.  In this talk I will discuss obstructions to the existence of a 1-form symmetry in large N QCD, where confinement is a sharp notion. I give general arguments for this disconnect between 1-form symmetries and confinement, and use 2d scalar QCD on the lattice as an explicit example.  

Thu, 06 Oct 2022
14:00
N3.12

Gravitational Regge bounds

Kelian Haring
(Cern)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

I will review the basic assumptions and spell out the arguments that lead to the bound on the Regge growth of gravitational scattering amplitudes. I will discuss the Regge bounds both at fixed transfer momentum and smeared over it. Our basic conclusion is that gravitational scattering amplitudes admit dispersion relations with two subtractions. For a sub-class of smeared amplitudes, black hole formation reduces the number of subtractions to one. Finally, I will discuss bounds on local growth derived using dispersion relations. This talk is based on https://arxiv.org/abs/2202.08280.

Fri, 17 Jun 2022

16:00 - 17:00
L5

Defect Central Charges

Adam Chalabi
(Southampton University)
Abstract

Conformal defects can be characterised by their contributions to the Weyl anomaly. The coefficients of these terms, often called defect central charges, depend on the particular defect insertion in a given conformal field theory. I will review what is currently known about defect central charges across dimensions, and present novel results. I will discuss many examples where they can be computed exactly without requiring any approximations or limits. Particular emphasis will be placed on recently developed tools for superconformal defects as well as defects in free theories.

Fri, 10 Jun 2022

16:00 - 17:00
N4.01

From Gravitational Orbits to Quantum Scars

Matthew Dodelson
(Cern)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

I will describe recent work with Zhibeodov on the boundary interpretation of orbits around an AdS black hole. When the orbits are far away from the black hole, these orbits describe heavy-light double-twist operators on the boundary. I will discuss how the dimensions of these operators can be computed exactly in terms of quasinormal modes in the bulk, using techniques from a paper to appear soon with Grassi, Iossa, Lichtig, and Zhiboedov. Then I will explain how these results are related to the concept of quantum scars, which are eigenstates that do not obey ETH. 

Fri, 03 Jun 2022

16:00 - 17:00
N4.01

Hydrodynamic dispersion relations at finite coupling

Petar Tadic
(Yale University)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

Hydrodynamic excitations corresponding to sound and shear modes in fluids are characterized by gapless dispersion relations. In the hydrodynamic gradient expansion, their frequencies are represented by power series in spatial momenta. In this talk we will discuss the convergence properties of the hydrodynamic series by studying the associated spectral curve in the space of complexified frequency and complexified spatial momentum. For the N=4 supersymmetric Yang-Mills plasma at infinite 't Hooft coupling, we will use the holographic methods to demonstrate that the derivative expansions have finite non-zero radii of convergence. Obstruction to the convergence of hydrodynamic series arises from level-crossings in the quasinormal spectrum at complex momenta. We will discuss how finiteness of 't Hooft coupling affects the radius of convergence. We will show that the purely perturbative calculation in terms of inverse 't Hooft coupling gives the increasing radius of convergence when the coupling is decreasing. Applying the non-perturbative resummation techniques will make radius of convergence piecewise continuous function that decreases after the initial increase. Finally, we will provide arguments in favour of the non-perturbative approach and show that the presence of nonperturbative modes in the quasinormal spectrum can be indirectly inferred from the analysis of perturbative critical points.

Fri, 27 May 2022

16:00 - 17:00
N4.01

Deconfining N=2 SCFTs

Matteo Lotito
(University of Massachusetts)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

In this talk I will describe a systematic approach, introduced in our recent work 2111.08022, to construct Lagrangian descriptions for a class of strongly interacting N=2 SCFTs. I will review the main ingredients of these constructions, namely brane tilings and the connection to gauge theories. For concreteness, I will then specialize to the case of the simplest of such geometrical setups, as in the paper, even though our approach should be much more general. I will comment on some low rank examples of the theories we built, that are well understood by (many) alternative approaches and conclude with some open questions and ideas for future directions to explore.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Fri, 13 May 2022

16:00 - 17:00
N4.01

The Supersymmetric Index and its Holographic Interpretation

Ohad Mamroud
(Weizmann Institute)
Further Information

It is possible to also join online via Microsoft Teams.

Abstract

I'll review 2104.13932, where we analyze the supersymmetric index of N=4 SU(N) Super Yang-Mills using the Bethe Ansatz approach, expressing it as a sum and concentrating on some family of contributions to the sum. We show that in the large N limit each term in this family corresponds to the contribution of a different euclidean black hole to the partition function of the dual gravitational theory. By taking into account non-perturbative contributions (wrapped D3-branes), we further show a one to one match between the contributions of the gravitational saddles and this family of contributions to the index, both at the perturbative and non-perturbative levels. I'll end with some new results regarding the Bethe Ansatz expansion and the information one could extract from it.

Fri, 06 May 2022

16:00 - 17:00
L5

On-shell Correlators and Color-Kinematics Duality in Curved Spacetimes

Allic Sivaramakrishnan
(University of Kentucky)
Further Information

It is also possible to join online via Zoom.

Abstract

We define a perturbatively calculable quantity—the on-shell correlator—which furnishes a unified description of particle dynamics in curved spacetime. Specializing to the case of flat and anti-de Sitter space, on-shell correlators coincide precisely with on-shell scattering amplitudes and boundary correlators, respectively. Remarkably, we find that symmetric manifolds admit a generalization of on-shell kinematics in which the corresponding momenta are literally the isometry generators of the spacetime acting on the external kinematic data. These isometric momenta are intrinsically non-commutative but exhibit on-shell conditions that are identical to those of flat space, thus providing a common language for computing and representing on-shell correlators which is agnostic about the underlying geometry. 

As applications of these tools, we compute n-point scalar correlators in AdS in terms of isometric momenta. In many cases, the results are direct lifts of flat-space expressions. We provide field-theoretic proofs of color-kinematics duality and BCJ relations in AdS at n-points in biadjoint scalar theory and the nonlinear sigma model. We discuss possible extensions to generic curved spacetimes without symmetry.

Fri, 18 Mar 2022
16:00
L6

Plaquette-dimer liquid with emergent fracton

Yizhi You
(Oxford University)
Further Information

The speaker will be in-person. It is also possible to join virtually via zoom.

Abstract

We consider close-packed tiling models of geometric objects -- a mixture of hardcore dimers and plaquettes -- as a generalisation of the familiar dimer models. Specifically, on an anisotropic cubic lattice, we demand that each site be covered by either a dimer on a z-link or a plaquettein the x-y plane. The space of such fully packed tilings has an extensive degeneracy. This maps onto a fracton-type `higher-rank electrostatics', which can exhibit a plaquette-dimer liquid and an ordered phase. We analyse this theory in detail, using height representations and T-duality to demonstrate that the concomitant phase transition occurs due to the proliferation of dipoles formed by defect pairs. The resultant critical theory can be considered as a fracton version of the Kosterlitz-Thouless transition. A significant new element is its UV-IR mixing, where the low energy behavior of the liquid phase and the transition out of it is dominated by local (short-wavelength) fluctuations, rendering the critical phenomenon beyond the renormalization group paradigm.

Fri, 04 Mar 2022
16:00
N4.01

Infrared phases of QCD in two dimensions

Matthew Yu
(Perimeter Institute)
Further Information

It is also possible to join virtually via Teams.

Abstract

Understanding dynamics of strongly coupled theories is a problem that garners great interest from many fields of physics. In order to better understand theories in 3+1d one can look to lower dimensions for theories which share some properties, but also may exhibit new features that are useful to understand the dynamics. QCD in 1+1d is a strongly coupled theory in the IR, and this talk will explain how to determine if these theories are gapped or gapless in the IR. Moreover, I will describe what IR theory that UV QCD flows to and discuss the IR dynamics. 

Fri, 25 Feb 2022
16:00

Exact QFT duals of AdS black holes

Saebyeok Jeong
(Rutgers)
Further Information

It is also possible to join virtually via Teams.

Abstract

Recently, it has been more clearly understood that the N=4 superconformal index leads to the microstate counting of the BPS black holes in AdS_5 X S^5. The leading N^2 behavior of the free energy was shown in various ways to match that of the known BPS black hole in the gravity side, but this correspondence has not been realized at the level of the saddle point analysis of the full matrix model for the N=4 index. Here, I will try to clarify how such saddles corresponding to the BPS black holes arise as 'areal' distributions. The talk is based on https://arxiv.org/abs/2111.10720 with Sunjin Choi, Seok Kim, and Eunwoo Lee; https://arxiv.org/abs/2103.01401 with Sunjin Choi and Seok Kim.

Fri, 18 Feb 2022
16:00
C1

Fractons

Yizhi You
(Oxford)
Fri, 11 Feb 2022
16:00
C6

Renormalization Group Flows on Line Defects

Avia Raviv-Moshe
(Simons Center Stony Brook)
Further Information

It is also possible to join virtually via zoom.

Abstract

We will consider line defects in d-dimensional CFTs. The ambient CFT places nontrivial constraints on renormalization group flows on such line defects. We will see that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We will demonstrate this generalization in some concrete examples, including a flow between Wilson loops in 4 dimensions, and an O(3) bosonic theory coupled to an impurity in the large spin representation of the bulk global symmetry.

Fri, 04 Feb 2022
16:00
N4.01

Gravity factorized

Jorrit Kruthoff
(Stanford University)
Further Information

It is also possible to join virtually via Teams.

Abstract

There are various aspects of the AdS/CFT correspondence that are rather mysterious. For example, how does the gravitational theory know about a discrete boundary spectrum or how does it know moments of the partition function factorize, given the existence of connected (wormhole) geometries? In this talk I will discuss some recent efforts with Andreas Blommaert and Luca Iliesiu on these two puzzles in two dimensional dilaton gravities. These gravity theories are simple enough that we can understand and propose a resolution to the discreteness and factorization puzzles. I will show that a tiny but universal bilocal spacetime interaction in the bulk is enough to ensure factorization, whereas modifying the dilaton potential with tiny corrections gives a discrete boundary spectrum. We will discuss the meaning of these corrections and how they could be related to resolutions of the same puzzles in higher dimensions. 

Fri, 28 Jan 2022
16:00
N4.01

Generalized Symmetries of the Graviton

Javier Magan
(UPenn)
Further Information

It is also possible to join virtually via Teams.

Abstract

In this talk we discuss the set of generalized symmetries associated with the free graviton theory in four dimensions. These are generated by ring-like operators. As for the Maxwell field, we find a set of “electric” and a dual set of “magnetic” topological operators and compute their algebra. The associated electric and magnetic fields satisfy a set of constraints equivalent to the ones of a stress tensor of a 3d CFT. This implies that the generalized symmetry is charged under space-time symmetries, and it provides a bridge between linearized gravity and the tensor gauge theories that have been introduced recently in the context of fractonic systems in condensed matter physics.

Fri, 21 Jan 2022
16:00
Virtual

On fixed points and phase transitions in five dimensions

Francesco Mignosa
(SISSA)
Abstract

Supersymmetric gauge theories in five dimensions, although power counting non-renormalizable, are known to be in some cases UV completed by a superconformal field theory. Many tools, such as M-theory compactification and pq-web constructions, were used in recent years in order to deepen our understanding of these theories. This framework gives us a concrete way in which we can try to search for additional IR conformal field theory via deformations of these well-known superconformal fixed points. Recently, the authors of 2001.00023 proposed a supersymmetry breaking mass deformation of the E_1theory which, at weak gauge coupling, leads to pure SU(2) Yang-Mills and which was conjectured to lead to an interacting CFT at strong coupling. During this talk, I will provide an explicit geometric construction of the deformation using brane-web techniques and show that for large enough gauge coupling a global symmetry is spontaneously broken and the theory enters a new phase which, at infinite coupling, displays an instability. The Yang-Mills and the symmetry broken phases are separated by a phase transition. Quantum corrections to this analysis are discussed, as well as possible outlooks. Based on arXiv: 2109.02662.

Fri, 03 Dec 2021
16:00
N4.01

G2 instantons in twisted M-theory

Jihwan Oh
(Oxford)
Further Information

It is also possible to join online via Zoom.

Abstract

Computing Donaldson-Thomas partition function of a G2 manifold has been a long standing problem. The key step for the problem is to understand the G2 instanton moduli space. I will discuss a string theory way to study the G2 instanton moduli space and explain how to compute the instanton partition function for a certain G2 manifold. An important insight comes from the twisted M-theory on the G2 manifold. This talk is based on a work with Michele del Zotto and Yehao Zhou.

Fri, 26 Nov 2021
16:00
N4.01

Holomorphic modular bootstrap revisited

Justin Kaidi
(SCGP Stonybrook)
Further Information

It is also possible to join online via TEAMS.

Abstract

In this talk I will review the “holomorphic modular bootstrap,” i.e. the classification of rational conformal field theories via an analysis of the modular differential equations satisfied by their characters. By making use of the representation theory of PSL(2, Zn), we describe a method to classify allowed central charges and weights (c, hi) for theories with any number of characters d. This allows us to avoid various bottlenecks encountered previously in the literature, and leads to a classification of consistent characters up to d = 5 whose modular differential equations are uniquely fixed in terms of (c, hi). In the process, we identify the full set of constraints on the allowed values of the Wronskian index for fixed d ≤ 5.

Fri, 19 Nov 2021
16:00
N4.01

Symmetries and Completeness in EFT and Gravity

Jake McNamara
(Harvard)
Further Information

It is also possible to join online via Zoom.

Abstract

We discuss the formal relationship between the absence of global symmetries and completeness, both in effective field theory and in quantum gravity. In effective field theory, we must broaden our notion of symmetry to include non-invertible topological operators. However, in gravity, the story is simplified as the result of charged gravitational solitons.

Fri, 05 Nov 2021
16:00
N3.12

Holographic Duals of Argyres-Douglas Theories

Federico Bonetti
(Oxford University)
Further Information

This seminar will only be in person.

Abstract

Superconformal field theories (SCFTs) of Argyres-Dougles type are inherently strongly coupled and provide a window onto remarkable non-perturbative phenomena (such as mutually non-local massless dyons and relevant Coulomb branch operators of fractional dimension). I am going to discuss the first explicit proposal for the holographic duals of a class of SCFTs of Argyres-Douglas type. The theories under examination are realised by a stack of M5-branes wrapped on a sphere with one irregular puncture and one regular puncture. In the dual 11d supergravity solutions, the irregular puncture is realised as an internal M5-brane source.

Fri, 29 Oct 2021
16:00
N4.01

A microscopic expansion for superconformal indices

Ji Hoon Lee
(Perimeter Institute)
Further Information

It is also possible to join online via Zoom.

Abstract

I discuss a novel expansion of superconformal indices of U(N) gauge theories at finite N. When a holographic description is available, the formula expresses the index as a sum over stacks of "giant graviton" branes in the dual string theory. Surprisingly, the expansion turns out to be exact: the sum over strings and branes seems to capture the degeneracy of states expected from saddle geometries such as BPS black holes, while also reproducing the correct degeneracies at lower orders of charges. Based on 2109.02545 with D. Gaiotto.

Fri, 18 Jun 2021
12:45

Generalized entropy in topological string theory

Gabriel Wong
(Fudan University)
Abstract

The holographic entanglement entropy formula identifies the generalized entropy of the bulk AdS spacetime with the entanglement entropy of the boundary CFT. However the bulk microstate interpretation of the generalized entropy remains poorly understood. Progress along this direction requires understanding how to define Hilbert space factorization and entanglement entropy in the bulk closed string theory.   As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A model, which enjoys a gauge-string duality.   We define a notion of generalized entropy for closed strings on the resolved conifold using the replica trick.   As in AdS/CFT, we find this is dual to (defect) entanglement entropy in the dual Chern Simons gauge theory.   Our main result is a bulk microstate interpretation of generalized entropy in terms of open strings and their edge modes, which we identify as entanglement branes.   

 

More precisely, we give a self consistent factorization of the closed string Hilbert space which introduces open string edge modes transforming under a q-deformed surface symmetry group. Compatibility with this symmetry requires a q-deformed definition of entanglement entropy. Using the topological vertex formalism, we define the Hartle Hawking state for the resolved conifold and compute its q-deformed entropy directly from the reduced density matrix.   We show that this is the same as the generalized entropy.   Finally, we relate non local aspects of our factorization map to analogous phenomenon recently found in JT gravity.

Fri, 11 Jun 2021
12:45

4d Chern-Simons theory and the Bethe/gauge correspondence for superspin chains

Junya Yagi
(Tsinghua University)
Abstract

I will discuss a string theory perspective on the Bethe/Gauge correspondence for the XXX superspin chain. I explain how to realize 4d Chern-Simons theory with gauge supergroup using branes, and how the brane configurations for the superspin chain get mapped to 2d N = (2,2) quiver gauge theories proposed by Nekrasov. This is based on my ongoing work with Nafiz Ishtiaque, Faroogh Moosavian and Surya Raghavendran.

Fri, 04 Jun 2021
16:00

CANCELLED. A gravity interpretation for the Bethe Ansatz expansion of the N = 4 SYM index

Paolo Milan
(Technion)
Abstract

In this talk I will present a gravitational interpretation for the superconformal index of N = 4 SYM theory in the large N limit. I will start by reviewing the so-called Bethe Ansatz formulation of the field theory index and its large N expansion (which includes both perturbative and non-perturbative corrections in 1/N). In the gravity side, according the rules of AdS/CFT correspondence, the index—interpreted as the supersymmetric partition function of N = 4 SYM—should be equivalent to the gravitational partition function on AdS_5 x S^5. The latter is classically evaluated as a sum over Euclidean gravity solutions with appropriate boundary conditions. In this context, I will show that (in the case of equal angular momenta) the contribution to the index of each Bethe Ansatz solution that admits a proper large N limit is captured by a complex black hole solution in the gravity side, which reproduces both its perturbative and non-perturbative behavior. More specifically, the number of putative black hole solutions turns out to be much larger than the number of Bethe Ansatz solutions. A resolution of this issue is found by requiring the gravity solutions to be “stable” under the non-perturbative corrections. This ensures that all the extra gravity solutions are ruled out and leads to a precise match between field theory and gravity.

Fri, 28 May 2021
12:45

Boundary causality violating metrics in holography

Diandian Wang
(University of California Santa Barbara)
Abstract

A well-behaved field theory living on a fixed background has a causality structure defined by the background metric. In holography, however, signals can travel through the bulk, and some bulk metrics would allow a signal to travel faster than the speed of light as seen on the boundary. These are called boundary causality violating metrics. Holographers usually work with a classical bulk metric, in which case they declare that boundary causality violating metrics are forbidden. However, in a full quantum gravity path integral, these metrics do contribute. The question is then: how to avoid causality violation in this context? In this talk I will give a prescription that achieves this.

Fri, 21 May 2021
16:00
Virtual

Black hole microstate statistics from Euclidean wormholes

Jordan Cotler
(Harvard University)
Abstract

Over the last several years, it has been shown that black hole microstate level statistics in various models of 2D gravity are encoded in wormhole amplitudes.  These statistics quantitatively agree with predictions of random matrix theory for chaotic quantum systems; this behavior is realized since the 2D theories in question are dual to matrix models.  But what about black hole microstate statistics for Einstein gravity in 3D and higher spacetime dimensions, and ultimately in non-perturbative string theory?  We will discuss progress in these directions.  In 3D, we compute a wormhole amplitude that encodes the energy level statistics of BTZ black holes.  In 4D and higher, we find analogous wormholes which appear to encode the level statistics of small black holes just above threshold.  Finally, we study analogous Euclidean wormholes in the low-energy limit of type IIB string theory; we provide evidence that they encode the level statistics of small black holes just above threshold in AdS5 x S5.  Remarkably, these wormholes appear to be stable in appropriate regimes, and dominate over brane-anti-brane nucleation processes in the computation of black hole microstate statistics.

Fri, 14 May 2021
16:00
Virtual

Leaps and bounds towards scale separation

Bruno De Luca
(Stanford University)
Abstract

In a broad class of gravity theories, the equations of motion for vacuum compactifications give a curvature bound on the Ricci tensor minus a multiple of the Hessian of the warping function. Using results in so-called Bakry-Émery geometry, I will show how to put rigorous general bounds on the KK scale in gravity compactifications in terms of the reduced Planck mass or the internal diameter.
If time permits, I will reexamine in this light the local behavior in type IIA for the class of supersymmetric solutions most promising for scale separation. It turns out that the local O6-plane behavior cannot be smoothed out as in other local examples; it generically turns into a formal partially smeared O4.

Fri, 07 May 2021
16:00
Virtual

The Cardy-like limit of the N=1 superconformal index

Marco Fazzi
(Milan Bicocca U.)
Abstract

I will give a pedagogical introduction to the Cardy-like limit of the superconformal index of N=4 SYM and generic N=1 SCFTs, highlighting its role in the holographic dual black hole microstate counting problem.

Fri, 30 Apr 2021
16:15
Virtual

Organisational meeting

Further Information

In the organisational meeting we will discuss the schedule, format and contents of this term's JC, so do come along and give your input as to which interesting papers or topics we should take up. We will meet in the group gathertown.

Fri, 12 Mar 2021
16:00
Virtual

Boundaries, Factorisation & Mirror Duality

Daniel Zhang
(Cambridge)
Abstract

I will review recent work on N=(2,2) boundary conditions of 3d
N=4 theories which mimic isolated massive vacua at infinity. Subsets of
local operators supported on these boundary conditions form lowest
weight Verma modules over the quantised bulk Higgs and Coulomb branch
chiral rings. The equivariant supersymmetric Casimir energy is shown to
encode the boundary ’t Hooft anomaly, and plays the role of lowest
weights in these modules. I will focus on a key observable associated to
these boundary conditions; the hemisphere partition function, and apply
them to the holomorphic factorisation of closed 3-manifold partition
functions and indices. This yields new “IR formulae” for partition
functions on closed 3-manifolds in terms of Verma characters. I will
also discuss ongoing work on connections to enumerative geometry, and
the construction of elliptic stable envelopes of Aganagic and Okounkov,
in particular their physical manifestation via mirror duality
interfaces.

This talk is based on 2010.09741 and ongoing work with Mathew Bullimore
and Samuel Crew.

Fri, 05 Mar 2021
16:00
Virtual

Global Anomalies on the Hilbert space

Diego Delmastro
(Perimeter Institute)
Abstract

 I will be reviewing our recent article arXiv:2101.02218 where we propose a simple method for detecting global (a.k.a. non-perturbative) anomalies for generic quantum field theories. The basic idea is to study how the symmetries are realized on the Hilbert space of the theory. I will present several elementary examples where everything can be solved explicitly. After that, we will use these results to make non-trivial predictions about strongly interacting theories.

Fri, 26 Feb 2021
16:00
Virtual

Fermionic CFTs

Philip Boyle Smith
(Cambridge)
Abstract

There has been a recent uptick in interest in fermionic CFTs. These mildly generalise the usual notion of CFT to allow dependence on a background spin structure. I will discuss how this generalisation manifests itself in the symmetries, anomalies, and boundary conditions of the theory, using the series of unitary Virasoro minimal models as an example.

Fri, 19 Feb 2021
16:00
Virtual

The statistical mechanics of near-extremal and near-BPS black holes

Luca Iliesiu
(Stanford University)
Abstract

An important open question in black hole thermodynamics is about the existence of a "mass gap" between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this talk, I will discuss how to reliably compute the partition function of 4d Reissner-Nordstrom near-extremal black holes at temperature scales comparable to the conjectured gap. I will show that the density of states at fixed charge does not exhibit a gap in the simplest gravitational non-supersymmetric theories; rather, at the expected gap energy scale, we see a continuum of states whose meaning we will extensively discuss. Finally, I will present a similar computation for nearly-BPS black holes in 4d N=2 supergravity. As opposed to their non-supersymmetric counterparts, such black holes do in fact exhibit a gap consistent with various string theory predictions.

Fri, 12 Feb 2021
16:00
Virtual

Chern-Weil Global Symmetries and How Quantum Gravity Avoids Them

Irene Valenzuela
(Harvard University)
Abstract

I will discuss a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths and their conservation follows from Bianchi identities, so they are not easy to break. However, exact global symmetries should not be allowed in a consistent theory of quantum gravity. I will explain how these symmetries are typically gauged or broken in string theory. Interestingly, many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity.

Fri, 05 Feb 2021
16:00
Virtual

The Holographic Swampland

Filippo Revello
(Oxford University)
Abstract

We investigate whether Swampland constraints on the low-energy dynamics of weakly coupled string vacua in AdS can be related to inconsistencies of their putative holographic duals or, more generally, recast in terms of CFT data. In the main part of the talk, we shall illustrate how various swampland consistency constraints are equivalent to a negativity condition on the sign of certain mixed anomalous dimensions. This condition is similar to established CFT positivity bounds arising from causality and unitarity, but not known to hold in general. Our analysis will include LVS, KKLT, perturbative and racetrack stabilisation, and we shall also point out an intriguing connection to the Distance Conjecture. In the final part we will take a complementary approach, and show how a recent, more rigorous CFT inequality maps to non-trivial constraints on AdS, mentioning possible applications along the way.

Fri, 29 Jan 2021
16:00
Virtual

M2 and D3 branes wrapped on a spindle

Pietro Ferrero
(University of Oxford)
Abstract

We consider the Plebanski-Demianski family of solutions of minimal gauged supergravity in D=4, which describes an accelerating, rotating and charged black-hole in AdS4. The 4d metric has conical singularities, but we show that it can uplifted to a completely regular solution of D=11 supergravity. We focus on the supersymmetric and extremal case, where the near-horizon geometry is AdS2x\Sigma, where \Sigma is a spindle, or weighted projective space. We argue that this is dual to a d=1, N=(2,0) SCFT which is the IR limit of a 3d SCFT compactified on a spindle. This, in turn, should be realized holographically by wrapping a stack of M2-branes on a spindle. Such construction displays two interesting features: 1) supersymmetry is realized in a novel way, which is not the topological twist, and 2) the R-symmetry of the d=1 SCFT mixes with the U(1) isometry of the spindle, even in the absence of rotation. A similar idea also applies to a class of AdS3x\Sigma solutions of minimal gauged supergravity in D=5.

Fri, 04 Dec 2020
18:45
Virtual

Symmetries and Strings of adjoint QCD in two dimensions

Konstantinos Roumpedakis
(UCLA)
Abstract

In this talk, we will review the notion of non-invertible symmetries and we will study adjoint QCD in two dimensions. It turns out that this theory has a plethora of such symmetries which require deconfinement in the massless case. When a mass or certain quartic interactions are tunrned on, these symmetries are broken and the theory confines. In addition, we will use these symmetries to calculate the string tension for small mass and make some comments about naturalness along the RG flow.

Fri, 27 Nov 2020
16:30
Virtual

On the Spectrum of Pure Higher Spin Gravity

Carmen Jorge Diaz
(University of Oxford)
Abstract

One of the very unique properties of AdS_3 spacetimes is that we can introduce a finite number of massless higher spin fields without yielding an inconsistent theory. In this talk, we would like to comment on what the spectrum of these theories looks like: from the known contribution of the light spectrum, that corresponds to the vacuum character of the W_N algebra, we can use modular invariance to constraint the heavy spectrum of the theory. However, in doing so, we find negative norm states, inconsistent with unitarity. We propose a possible cure by adding light states that can be interpreted as massive particles with a conical defect associated to them, and study what scenario we are left with. The results that we will revisit are those presented in 2009.01830. 

Fri, 20 Nov 2020
16:00
Virtual

Polarizations and Symmetries of T[M] theories

Du Pei
(Harvard)
Abstract

I will lead an informal discussion centered on discrete data that need to be specified when reducing 6d relative theories on an internal manifold M and how they determine symmetries of the resulting theory T[M].

Fri, 13 Nov 2020
16:00
Virtual

Holographic correlators at finite temperature

Murat Koloğlu
(University of Oxford)
Abstract

We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions in the bulk, with an arbitrary number of derivatives and for any number of spacetime dimensions. The solutions are fixed by judiciously picking an ansatz and imposing consistency conditions. The conditions include analyticity properties, consistency with the operator product expansion, and the Kubo-Martin-Schwinger condition. For the case without any derivatives we show agreement with an explicit diagrammatic computation. The structure of the answer is suggestive of a thermal Mellin amplitude. Additionally, we derive a simple dispersion relation for thermal two-point functions which reconstructs the function from its discontinuity.

Fri, 06 Nov 2020
16:00
Virtual

Swampland Constraints on 5d N=1 Supergravity

Houri Christina Tarazi
(Harvard University)
Abstract

We propose Swampland constraints on consistent 5d N=1 supergravity theories. In particular, we focus on a special class of BPS monopole strings which arise only in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be computed using the anomaly inflow mechanism and provide constraints for the 5d supergravity using unitarity of the worldsheet CFT. In M-theory, where these theories can be realised by compactification on Calabi-Yau threefolds, the special monopole strings arise from M5 branes wrapping “semi-ample” 4-cycles in the threefolds. We further identify necessary geometric conditions that such cycles need to satisfy and translate them into constraints for the low-energy gravity theory.

Fri, 30 Oct 2020
14:00
Virtual

Classifying Superconformal Defects in Diverse Dimensions

Yifan Wang
(Harvard)
Abstract

We explore general constraints from unitarity, defect superconformal symmetry and locality of bulk-defect couplings to classify possible superconformal defects in superconformal field theories (SCFT) of spacetime dimensions d>2.  Despite the general absence of locally conserved currents, the defect CFT contains new distinguished operators with protected quantum numbers that account for the broken bulk symmetries.  Consistency with the preserved superconformal symmetry and unitarity requires that such operators arrange into unitarity multiplets of the defect superconformal algebra, which in turn leads to nontrivial constraints on what kinds of defects are admissible in a given SCFT.  We will focus on the case of superconformal lines in this talk and comment on several interesting implications of our analysis, such as symmetry-enforced defect conformal manifolds, defect RG flows and possible nontrivial one-form symmetries in various SCFTs.