Past Algebra Seminar

24 November 2020
14:15
Michael Collins
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

17 November 2020
14:15
Susan Sierra
Abstract

Let W be the Witt algebra of vector fields on the punctured complex plane, and let Vir be the Virasoro algebra, the unique nontrivial central extension of W.  We discuss work in progress with Alexey Petukhov to analyse Poisson ideals of the symmetric algebra of Vir.

We focus on understanding maximal Poisson ideals, which can be given as the Poisson cores of maximal ideals of Sym(Vir) and of Sym(W).  We give a complete classification of maximal ideals of Sym(W) which have nontrivial Poisson cores.  We then lift this classification to Sym(Vir), and use it to show that if $\lambda \neq 0$, then $(z-\lambda)$ is a maximal Poisson ideal of Sym(Vir).

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

10 November 2020
14:15
Lucas Mason-Brown
Abstract

Let $G$ be a connected reductive algebraic group, and let $G(\mathbb{F}_q)$ be its group of $\mathbb{F}_q$-rational points. Denote by $\mathrm{Irr}(G(\mathbb{F}_q))$ the set of (equivalence classes) of irreducible finite-dimensional representations. Deligne and Lusztig defined a finite subset $$\mathrm{Unip}(G(\mathbb{F}_q)) \subset \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$$ 
of unipotent representations. These representations play a distinguished role in the representation theory of $G(\mathbb{F}_q)$. In particular, the classification of $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ reduces to the classification of $\mathrm{Unip}(G(\mathbb{F}_q))$. 

Now replace $\mathbb{F}_q$ with a local field $k$ and replace $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ with $\mathrm{Irr}_{\mathrm{u}}(G(k))$ (irreducible unitary representations). Vogan has predicted the existence of a finite subset 
$$\mathrm{Unip}(G(k)) \subset \mathrm{Irr}_{\mathrm{u}}(G(k))$$ 
which completes the following analogy
$$\mathrm{Unip}(G(k)) \text{ is to } \mathrm{Irr}_{\mathrm{u}}(G(k)) \text{ as } \mathrm{Unip}(G(\mathbb{F}_q)) \text{ is to } \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q)).$$
In this talk I will propose a definition of $\mathrm{Unip}(G(k))$ when $k = \mathbb{C}$. The definition is geometric and case-free. The representations considered include all of Arthur's, but also many others. After sketching the definition and cataloging its properties, I will explain a classification of $\mathrm{Unip}(G(\mathbb{C}))$, generalizing the well-known result of Barbasch-Vogan for Arthur's representations. Time permitting, I will discuss some speculations about the case of $k=\mathbb{R}$.

This talk is based on forthcoming joint work with Ivan Loseu and Dmitryo Matvieievskyi.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

3 November 2020
14:15
Stella Gastineau
Abstract

In 2013, Reeder–Yu gave a construction of supercuspidal representations by starting with stable characters coming from the shallowest depth of the Moy–Prasad filtration. In this talk, we will be diving deeper—but not too deep. In doing so, we will construct examples of supercuspidal representations coming from a larger class of “shallow” characters. Using methods similar to Reeder–Yu, we can begin to make predictions about the Langlands parameters for these representations.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

27 October 2020
14:15
Emile Okada
Abstract

The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

20 October 2020
14:15
Stephen Griffeth
Abstract

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

13 October 2020
14:15
Dan Ciubotaru
Abstract

In the classical setting of real semisimple Lie groups, the Dirac inequality (due to Parthasarathy) gives a necessary condition that the infinitesimal character of an irreducible unitary representation needs to satisfy in terms of the restriction of the representation to the maximal compact subgroup. A similar tool was introduced in the setting of representations of p-adic groups in joint work with Barbasch and Trapa, where the necessary unitarity condition is phrased in terms of the semisimple parameter in the Kazhdan-Lusztig parameterization and the hyperspecial parahoric restriction. I will present several consequences of this inequality to the problem of understanding the unitary dual of the p-adic group, in particular, how it can be used in order to exhibit several isolated "extremal" unitary representations and to compute precise "spectral gaps" for them.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

10 March 2020
14:15
Abstract

Mittag-Leffler condition ensures the exactness of the inverse limit of short exact sequences indexed on a partially ordered set admitting a countable cofinal subset. We extend Mittag-Leffler condition by relatively relaxing the countability assumption. As an application we prove an exactness result about the completion functor in the category of ultrametric locally convex vector spaces, and in particular we prove that a strict morphism between these spaces has closed image if its kernel is Fréchet.

Pages