Past Functional Analysis Seminar

26 January 2016
17:00
Evgenios Kakariadis
Abstract

A subshift is characterized by a set of allowable words on $d$ symbols. In a sense it encodes the allowable operations an automaton performs. In the late 1990's Matsumoto constructed a C*-algebra associated to a subshift, deriving initially his motivation from the work of Cuntz-Krieger. These C*-algebras were then studied in depth in a series of papers. In 2009 Shalit-Solel discovered a relation of the subshift algebras with their variants of operator algebras related to homogeneous ideals. In particular a subshift corresponds to a monomial ideal under this prism.

In a recent work with Shalit we take a closer look at these cases and study them in terms of classification programmes on nonselfadjoint operator algebras and Arveson's Programme on the C*-envelope. We investigate two nonselfadjoint operator algebras from one SFT and show that they completely classify the SFT: (a) up to the same allowable words, and (b) up to local conjugacy of the quantized dynamics. In addition we discover that the C*-algebra fitting Arveson's Programme is the quotient by the generalized compacts, rather than taking unconditionally all compacts as Matsumoto does. Actually there is a nice dichotomy that depends on the structure of the monomial ideal.

Nevertheless in the process we accomplish more in different directions. This happens as our case study is carried in the intersection of C*-correspondences, subproduct systems, dynamical systems and subshifts. In this talk we will give the basic steps of our results with some comments on their proofs.

  • Functional Analysis Seminar
1 December 2015
17:00
Maria Carmen Reguera
Abstract

The Bergman space $A_2(\mathbb D)$ is the closed subspace of $L^2(\mathbb D)$ consisting of analytic functions, where $\mathbb D$ denotes the unit
disk. One considers the projection from $L^2(\mathbb D)$ into $A_2(\mathbb D)$, such a projection can be written as an integral operator
with a singular kernel. In this talk, we will present the recent advances on the one weight and two weight theory for the
Bergman projection, in particular we will discuss the Sarason Conjecture for the Bergman space, sharp weighted estimates for the Bergman projection and a description of a $B_{\infty}$ class that has been until now absent. This is joint work with A. Aleman and S. Pott from Lund University (Sweden).

  • Functional Analysis Seminar
27 October 2015
17:00
Yemon Choi
Abstract
 An old result of Dixmier, Day and others states that every continuous bounded representation of an amenable group on Hilbert space is similar to a unitary representation. In similar vein, one can ask if amenable subalgebras of $B(H)$ are always similar to self-adjoint subalgebras. This problem was open for many years, but it was recently shown by Farah and Ozawa that in general the answer is negative; their approach goes via showing that the Dixmier--Day result is false when $B(H)$ is replaced by the Calkin algebra.

In this talk, I will give some of the background, and then outline a simplified and more explicit version of their construction; this is taken from joint work with Farah and Ozawa (2014) . It turns out that the key mechanism behind these negative results is the large supply of projections in $\ell_\infty / c_0$, rather than the complicated structure of $B(H)$.
  • Functional Analysis Seminar
13 October 2015
17:00
Abstract

This talk will be by videolink from Warsaw.  The starting-time will be a little after 17:00 due to a TCC lecture and time needed to establish video connections.

 

Abstract: The Haagerup approximation property for finite von Neumann algebras  (i.e.von Neumann algebras with a tracial faithful normal state) has been studied for more than 30 years. The original motivation to study this property came from the case of group von Neumann algebras of discrete groups, where it corresponds to the geometric Haagerup property of the underlying group. Last few years brought a lot of interest in the Haagerup property for discrete and general locally compact quantum groups. If the discrete quantum group in question is not unimodular, the associated (quantum) group von Neumann algebra cannot be finite, so we need a broader framework for the operator algebraic property. In this talk, I will present recent developments regarding the Haagerup approximation property for arbitrary von Neumann algebras and will also discuss some questions relating it to the issues related to the classical Schoenberg correspondence. (Mainly based on joint work with Martijn Caspers.)

  • Functional Analysis Seminar
2 June 2015
17:00
David Seifert
Abstract

We present several quantified versions of Ingham’s Tauberian theorem in
which the rate of decay is determined by the behaviour of a certain boundary
function near its singularities. The proofs of these results are modified
versions of Ingham’s own proof and, in particular, involve no estimates of
contour integrals. The general results are then applied in the setting of C_0-
semigroups, giving both new proofs of previously known results and, in one
important case, a sharper result than was previously available.

  • Functional Analysis Seminar

Pages