Past Geometry and Analysis Seminar

23 April 2018
14:15
Esther Cabezas-Rivas
Abstract

We study Brownian motion and stochastic parallel transport on Perelman's almost Ricci flat manifold,  whose dimension depends on a parameter $N$ unbounded from above. By taking suitable projections we construct sequences of space-time Brownian motion and stochastic parallel transport whose limit as $N\to \infty$ are the corresponding objects for the Ricci flow. In order to make precise this process of passing to the limit, we study the martingale problems for the Laplace operator on Perelman’s manifold and for the horizontal Laplacian on the corresponding orthonormal frame bundle.

As an application, we see how the characterizations of two-sided bounds on the Ricci curvature established by A. Naber applied to Perelman's manifold lead to the inequalities that characterize solutions of the Ricci flow discovered by Naber and Haslhofer.

This is joint work with Robert Haslhofer.

 

  • Geometry and Analysis Seminar
5 March 2018
14:15
Maxence Mayrand
Abstract

Symplectic reduction is the natural quotient construction for symplectic manifolds. Given a free and proper action of a Lie group G on a symplectic manifold M, this process produces a new symplectic manifold of dimension dim(M) - 2 dim(G). For non-free actions, however, the result is usually fairly singular. But Sjamaar-Lerman (1991) showed that the singularities can be understood quite precisely: symplectic reductions by non-free actions are partitioned into smooth symplectic manifolds, and these manifolds fit nicely together in the sense that they form a stratification.

Symplectic reduction has an analogue in hyperkähler geometry, which has been a very important tool for constructing new examples of these special manifolds. In this talk, I will explain how Sjamaar-Lerman’s results can be extended to this setting, namely, hyperkähler quotients by non-free actions are stratified
spaces whose strata are hyperkähler.

 

  • Geometry and Analysis Seminar
26 February 2018
14:15
Amihay Hanany
Abstract

3d N=4 supersymmetric gauge theories provide a method for constructing HyperK\”ahler singularities, known as the Coulomb branch.
This method is complementary to the more traditional way of construction using HyperK\”ahler quotients, known in physics as the “Higgs branch”.
Out of all possible gauge theories there is an interesting subclass of quiver varieties, where the Coulomb branch has been studied in some detail.
Some examples are moduli spaces of classical and exceptional instantons and closures of nilpotent orbits. An interesting feature of Coulomb and Higgs branches is the phenomenon of "3d mirror symmetry” where for a pair of gauge theories, the Higgs branch and Coulomb branch exchange.
There is a large class of “mirror pairs” which I will discuss in some detail.

A topic of recent interest is the notion of implosions. I will argue that there is a simple operation on the quiver which leads to implosion. In other words, given a quiver such that its Coulomb branch is moduli space A, a simple operation of the quiver (making a bouquet) provides the implosion of A.
This has been tested on closures of nilpotent orbits of A type and on nilpotent cones of orthogonal groups and found to agree with the expected results.
If time permits, I will discuss isometries of Coulomb branches

  • Geometry and Analysis Seminar
19 February 2018
14:15
Abstract

For many moduli problems, in order to construct a moduli space as a geometric invariant theory quotient, one needs to impose a notion of (semi)stability. Using recent results in non-reductive geometric invariant theory, we explain how to stratify certain moduli stacks in such a way that each stratum admits a coarse moduli space which is constructed as a geometric quotient of an action of a linear algebraic group with internally graded unipotent radical. As many stacks are
naturally filtered by quotient stacks, this involves describing how to stratify certain quotient stacks. Even for quotient stacks for reductive group actions, we see that non-reductive GIT is required to construct the coarse moduli spaces of the higher strata. We illustrate this point by studying the example of the moduli stack of coherent sheaves over a projective scheme. This is joint work with G. Berczi, J. Jackson and F. Kirwan.

  • Geometry and Analysis Seminar
12 February 2018
14:15
Paul Ziegler
Abstract

I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.

 

  • Geometry and Analysis Seminar
5 February 2018
14:15
Ailsa Keating
Abstract

In real dimension two, the symplectic mapping class group of a surface agrees with its `classical' mapping class group, whose properties are well-understood. To what extend do these generalise to higher-dimensions? We consider specific pairs of symplectic manifolds (S, M), where S is a surface, together with collections of Lagrangian spheres in S and in M, say v_1, ...,v_k and V_1, ...,V_k, that have analogous intersection patterns, in a sense that we will make precise. Our main theorem is that any relation between the Dehn twists in the V_i must also hold between Dehn twists in the v_i. Time allowing, we will give some corollaries, such as embeddings of certain interesting groups into auto-equivalence groups of Fukaya categories.

 

  • Geometry and Analysis Seminar
29 January 2018
14:15
Abstract

First, we will discuss sequences of closed minimal hypersurfaces (in closed Riemannian manifolds of dimension up to 7) that have uniformly bounded index and area. In particular, we explain a bubbling result which yields a bound on the total curvature along the sequence and, as a consequence, topological control in terms of index and area. We then specialise to minimal surfaces in ambient manifolds of dimension 3, where we use the bubbling analysis to obtain smooth multiplicity-one convergence under bounds on the index and genus. This is joint work with Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp

  • Geometry and Analysis Seminar
22 January 2018
14:15
Brent Doran
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

  • Geometry and Analysis Seminar
4 December 2017
14:15
Abstract

A bold conjecture of Boyer-Gorden-Watson and others posit that for any irreducible rational homology 3-sphere M the following three conditions are equivalent: (1) the fundamental group of M is left-orderable, (2) M has non-minimal Heegaard Floer homology, and (3) M admits a co-orientable taut foliation. Very recently, this conjecture was established for all graph manifolds by the combined work of Boyer-Clay and Hanselman-Rasmussen-Rasmussen-Watson. I will discuss a computational survey of these properties involving half a million hyperbolic 3-manifolds, including new or at least improved techniques for computing each of these properties.
 

  • Geometry and Analysis Seminar
27 November 2017
14:15
Matthias Wink
Abstract

In this talk two different methods for constructing complete steady and expanding Ricci solitons of cohomogeneity one will be discussed. The first is based on an estimate on the growth of the soliton potential and holds for large classes of cohomogeneity one manifolds. The second approach is specific to the two summands case and uses a Lyapunov function. This method also carries over to the Einstein case and as an application, a simplified construction of B\"ohm's Einstein metrics of positive scalar curvature on spheres will be explained.

 

  • Geometry and Analysis Seminar

Pages