Past Junior Number Theory Seminar

29 November 2021
16:00
Peter Bradshaw
Abstract

It is a widely accepted philosophy in additive number theory that convex sets ought not to exhibit much additive structure. We could measure this by estimating the sizes of their sumsets. In this talk, we will hopefully move from the philosophical to the concrete, by giving ways to see that convex sets and functions have poor additive structure. We will also discuss some recent developments in the area.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
22 November 2021
16:00
George Robinson, Nadav Gropper, Michael Curran, Ofir Gorodetsky
Abstract

The speakers will be giving short presentations introducing topics in algebraic number theory, arithmetic topology, random matrix theory, and analytic number theory.

Undergrads and Master's students are encouraged to come and sample a taste of research in these areas.

 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
15 November 2021
16:00
Nikoleta Kalaydzhieva
Abstract

In a world of polynomial Pell’s equations, where the integers are replaced by polynomials with complex coefficients, and its smallest solution is used to generate all other solutions $(u_{n},v_{n})$, $n\in\mathbb{Z}$. One junior number theory group will embark on a journey in search of the properties of the factors of $v_{n}(t)$. There will be Galois extensions, there will be estimations and of course there will be loglogs.

  • Junior Number Theory Seminar
8 November 2021
16:00
George Robinson
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
1 November 2021
16:00
Akshat Mudgal
Abstract

A nice collection of problems in additive combinatorics focus on analysing solutions to additive equations over sequences that exhibit some flavour of convexity. This, for instance, includes genuine convex sequences as well as images of arbitrary sets under convex functions. In this talk, I will survey some of the literature surrounding these type of questions, along with some motivation from analytic number theory as well as the current best known results towards these problems.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
25 October 2021
16:00
Francesco Ballini
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
18 October 2021
16:00

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
11 October 2021
16:00
Håvard Damm-Johnsen
Abstract

In 1973, Serre defined $p$-adic modular forms as limits of modular forms, and constructed the Leopoldt-Kubota $L$-function as the constant term of a limit of Eisenstein series. This was extended by Deligne-Ribet to totally real number fields, and Lauder and Vonk have developed an algorithm for interpolating $p$-adic $L$-functions of such fields using Serre's idea. We explain what an $L$-function is and why you should care, and then move on to giving an overview of the algorithm, extensions, and applications.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
21 June 2021
16:00
Natalie Evans
Abstract

The Hardy-Littlewood generalised twin prime conjecture states an asymptotic formula for the number of primes $p\le X$ such that $p+h$ is prime for any non-zero even integer $h$. While this conjecture remains wide open, Matom\"{a}ki, Radziwi{\l}{\l} and Tao proved that it holds on average over $h$, improving on a previous result of Mikawa. In this talk we will discuss an almost prime analogue of the Hardy-Littlewood conjecture for which we can go beyond what is known for primes. We will describe some recent work in which we prove an asymptotic formula for the number of almost primes $n=p_1p_2 \le X$ such that $n+h$ has exactly two prime factors which holds for a very short average over $h$.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
14 June 2021
17:30
TBA

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar

Pages