We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.

# Past Representation Theory Seminar

I will talk in down to earth terms about several main features of this theory.

We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).

Both sides of the geometric Langlands correspondence have natural Hecke

symmetries. I will explain an identification between the Hecke

symmetries on both sides via the geometric Satake equivalence. On the

abelian level it relates the topology of a variety associated to a group

and the representation category of its Langlands dual group.

I shall show that for every conjugacy class O in a connected semisimple algebraic group G over an algebraically closed field of characteristic good for G one can find a special transversal slice S to the set of conjugacy classes in G such that O intersects S and dim O=codim S. The construction of the slice utilizes some new combinatorics related to invariant planes for the action of Weyl group elements in the reflection representation. The condition dim O=codim S is checked using some new mysterious results by Lusztig on intersection of conjugacy classes in algebraic groups with Bruhat cells.

Let $G$ be a connected reductive group and $X$ a smooth complete curve, both defined over an algebraically closed field of characteristic zero. Let $Bun_G$ denote the stack of $G$-bundles on $X$. In analogy with the classical theory of Whittaker coefficients for automorphic functions, we construct a “Fourier transform” functor, called $coeff_{G}$, from the DG category of D-modules on $Bun_G$ to a certain DG category $Wh(G, ext)$, called the extended Whittaker category. Combined with work in progress by other mathematicians and the speaker, this construction allows to formulate the compatibility of the Langlands duality functor $$\mathbb{L}_G : \operatorname{IndCoh}_{N}(LocSys_{\check{G}} ) \to D(Bun_G)$$ with the Whittaker model. For $G = GL_n$ and $G = PGL_n$, we prove that $coeff_G$ is fully faithful. This result guarantees that, for those groups, $\mathbb{L}_G$ is unique (if it exists) and necessarily fully faithful.