<p>We introduce a deformation process of universal enveloping algebras of Borcherds-Kac-Moody algebras, which generalises quantum groups' one and yields a large class of new algebras called coloured Borcherds-Kac-Moody algebras. The direction of deformation is specified by the choice of a collection of numbers. For example, the natural numbers lead to classical enveloping algebras, while the quantum numbers lead to quantum groups. We prove, in the finite type case, that every coloured BKM algebra have representations which deform representations of semisimple Lie algebras and whose characters are given by the Weyl formula. We prove, in the finite type case, that representations of two isogenic coloured BKM algebras can be interpolated by representations of a third coloured BKM algebra. In particular, we solve conjectures of Frenkel-Hernandez about the Langland duality between representations of quantum groups. We also establish a Langlands duality between representations of classical BKM algebras, extending results of Littelmann and McGerty, and we interpret this duality in terms of quantum interpolation.</p>