Past Special Lecture

22 March 2018
Marie Hicks, Adrian Johnstone, Cliff Jones, Julianne Nyhan, Mark Priestly, Reinhard Siegmund-Schultze

The BSHM meeting on “The history of computing beyond the computer” looks at the people and the science underpinning modern software and programming, from Charles Babbage’s design notation to forgotten female pioneers.

Registration will be £32.50 for standard tickets, £22.00 for BSHM members and Oxford University staff, and £6.50 for students. This will include tea/coffee and biscuits at break times, but not lunch, as we wanted to keep the registration fee to a minimum. A sandwich lunch or a vegetarian sandwich lunch can be ordered separately on the Eventbrite page. If you have other dietary requirements, please use the contact button at the bottom of this page. There is also a café in the Mathematical Institute that sells hot food at lunchtime, alongside sandwiches and snacks, and there are numerous places to eat within easy walking distance.


21 March 2018

17:00 Andrew Hodges, University of Oxford, author of "Alan Turing: The Enigma” on 'Alan Turing: soft machine in a hard world.’

22 March 2018

9:00 Registration

9:30 Adrian Johnstone, Royal Holloway University of London, on Charles Babbage's design notation

10:15 Reinhard Siegmund-Schultze, Universitetet i Agder, on early numerical methods in the analysis of the Northern Lights

11:00 Tea/Coffee

11:30 Julianne Nyhan, University College London, on Father Busa and humanities data

12:15 Cliff Jones, University of Newcastle, on the history of programming language semantics

13:00 Lunch

14:00 Mark Priestley, author of "ENIAC in Action, Making and Remaking the Modern Computer"

14:45 Marie Hicks, University of Wisconsin-Madison, author of "Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge In Computing"

15:30 Tea/Coffee

16:00 Panel discussion to include Martin Campbell-Kelly (Warwick), Andrew Herbert (TNMOC), and Ursula Martin (Oxford)

17:00 End of conference

Co-located event

23 March, in Mathematical Institute, University of Oxford, Symposium for the History and Philosophy of Programming, HaPoP 2018, Call for extended abstracts


2 February 2018
Tom Nichols

Today, everyone knows everything: with only a quick trip through WebMD or Wikipedia, average citizens believe themselves to be on an equal intellectual footing with doctors and diplomats. All voices, even the most ridiculous, demand to be taken with equal seriousness, and any claim to the contrary is dismissed as undemocratic elitism. Tom Nichols argues that in this climate, democratic institutions themselves are in danger of falling either to populism or to technocracy- or in the worst case, a combination of both.

Tom Nichols is Professor of National Security Affairs at the US Naval War College, an adjunct professor at the Harvard Extension School, and a former aide in the U.S. Senate. His latest book is The Death of Expertise: The Campaign Against Established Knowledge and Why it Matters. This lecture is based on that book.

All welcome. No need to book.

15 January 2018
Andrew Wiles, Irene Fonseca, John Rognes


1.00pm: Introductory Remarks by Camilla Serck-Hanssen, the Vice President of the Norwegian Academy of Science and Letters

1.10pm - 2.10pm: Andrew Wiles

2.10pm - 2.30pm: Break

2.30pm - 3.30pm: Irene Fonseca

3.30pm - 4.00pm: Tea and Coffee

4.00pm - 5.00pm: John Rognes


Andrew Wiles: Points on elliptic curves, problems and progress

This will be a survey of the problems concerned with counting points on elliptic curves.


Irene Fonseca: Mathematical Analysis of Novel Advanced Materials

Quantum dots are man-made nanocrystals of semiconducting materials. Their formation and assembly patterns play a central role in nanotechnology, and in particular in the optoelectronic properties of semiconductors. Changing the dots' size and shape gives rise to many applications that permeate our daily lives, such as the new Samsung QLED TV monitor that uses quantum dots to turn "light into perfect color"! 

Quantum dots are obtained via the deposition of a crystalline overlayer (epitaxial film) on a crystalline substrate. When the thickness of the film reaches a critical value, the profile of the film becomes corrugated and islands (quantum dots) form. As the creation of quantum dots evolves with time, materials defects appear. Their modeling is of great interest in materials science since material properties, including rigidity and conductivity, can be strongly influenced by the presence of defects such as dislocations. 

In this talk we will use methods from the calculus of variations and partial differential equations to model and mathematically analyze the onset of quantum dots, the regularity and evolution of their shapes, and the nucleation and motion of dislocations.


John Rognes: Symmetries of Manifolds

To describe the possible rotations of a ball of ice, three real numbers suffice.  If the ice melts, infinitely many numbers are needed to describe the possible motions of the resulting ball of water.  We discuss the shape of the resulting spaces of continuous, piecewise-linear or differentiable symmetries of spheres, balls and higher-dimensional manifolds.  In the high-dimensional cases the answer turns out to involve surgery theory and algebraic K-theory.

3 November 2017
The Annual Charles Simonyi Lecture - Geoffrey West

In this year’s Simonyi Lecture, Geoffrey West discusses the universal laws that govern everything from the growth of plants and animals to cities and corporations. These laws help us to answer big, urgent questions about global sustainability, population explosion, urbanization, ageing, cancer, human lifespans and the increasing pace of life.

Why can we live for 120 years but not for a thousand? Why do mice live for just two or three years and elephants for up to 75? Why do companies behave like mice, and are they all destined to die? Do cities, companies and human beings have natural, pre-determined lifespans?

Geoffrey West is a theoretical physicist whose primary interests have been in fundamental questions in physics and biology. West is a Senior Fellow at Los Alamos National Laboratory and a distinguished professor at the Sante Fe Institute, where he served as the president from 2005-2009. In 2006 he was named to Time’s list of The 100 Most Influential People in the World.

This lecture will take place at the Oxford Playhouse, Beaumont Street. Book here


24 August 2017
Jeremy Rickard

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.


24 August 2017
Lleonard Rubio y Degrassi

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

24 August 2017
Sibylle Schroll (Leicester)

Abstract: In this talk, we will introduce new affine algebraic varieties 
for algebras given by quiver and relations. Each variety contains a 
distinguished element in the form of a monomial algebra. The properties 
and characteristics of this monomial algebra govern those of all other 
algebras in the variety. We will show how amongst other things this gives 
rise to a new way to determine whether an algebra is quasi-hereditary. 
This is a report on joint work both with Ed Green and with Ed Green and 
Lutz Hille.