Past Special Lecture

15 January 2018
Andrew Wiles, Irene Fonseca, John Rognes


1.00pm: Introductory Remarks by Camilla Serck-Hanssen, the Vice President of the Norwegian Academy of Science and Letters

1.10pm - 2.10pm: Andrew Wiles

2.10pm - 2.30pm: Break

2.30pm - 3.30pm: Irene Fonseca

3.30pm - 4.00pm: Tea and Coffee

4.00pm - 5.00pm: John Rognes


Andrew Wiles: Points on elliptic curves, problems and progress

This will be a survey of the problems concerned with counting points on elliptic curves.


Irene Fonseca: Mathematical Analysis of Novel Advanced Materials

Quantum dots are man-made nanocrystals of semiconducting materials. Their formation and assembly patterns play a central role in nanotechnology, and in particular in the optoelectronic properties of semiconductors. Changing the dots' size and shape gives rise to many applications that permeate our daily lives, such as the new Samsung QLED TV monitor that uses quantum dots to turn "light into perfect color"! 

Quantum dots are obtained via the deposition of a crystalline overlayer (epitaxial film) on a crystalline substrate. When the thickness of the film reaches a critical value, the profile of the film becomes corrugated and islands (quantum dots) form. As the creation of quantum dots evolves with time, materials defects appear. Their modeling is of great interest in materials science since material properties, including rigidity and conductivity, can be strongly influenced by the presence of defects such as dislocations. 

In this talk we will use methods from the calculus of variations and partial differential equations to model and mathematically analyze the onset of quantum dots, the regularity and evolution of their shapes, and the nucleation and motion of dislocations.


John Rognes: Symmetries of Manifolds

To describe the possible rotations of a ball of ice, three real numbers suffice.  If the ice melts, infinitely many numbers are needed to describe the possible motions of the resulting ball of water.  We discuss the shape of the resulting spaces of continuous, piecewise-linear or differentiable symmetries of spheres, balls and higher-dimensional manifolds.  In the high-dimensional cases the answer turns out to involve surgery theory and algebraic K-theory.

3 November 2017
The Annual Charles Simonyi Lecture - Geoffrey West

In this year’s Simonyi Lecture, Geoffrey West discusses the universal laws that govern everything from the growth of plants and animals to cities and corporations. These laws help us to answer big, urgent questions about global sustainability, population explosion, urbanization, ageing, cancer, human lifespans and the increasing pace of life.

Why can we live for 120 years but not for a thousand? Why do mice live for just two or three years and elephants for up to 75? Why do companies behave like mice, and are they all destined to die? Do cities, companies and human beings have natural, pre-determined lifespans?

Geoffrey West is a theoretical physicist whose primary interests have been in fundamental questions in physics and biology. West is a Senior Fellow at Los Alamos National Laboratory and a distinguished professor at the Sante Fe Institute, where he served as the president from 2005-2009. In 2006 he was named to Time’s list of The 100 Most Influential People in the World.

This lecture will take place at the Oxford Playhouse, Beaumont Street. Book here


24 August 2017
Jeremy Rickard

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.


24 August 2017
Lleonard Rubio y Degrassi

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

24 August 2017
Sibylle Schroll (Leicester)

Abstract: In this talk, we will introduce new affine algebraic varieties 
for algebras given by quiver and relations. Each variety contains a 
distinguished element in the form of a monomial algebra. The properties 
and characteristics of this monomial algebra govern those of all other 
algebras in the variety. We will show how amongst other things this gives 
rise to a new way to determine whether an algebra is quasi-hereditary. 
This is a report on joint work both with Ed Green and with Ed Green and 
Lutz Hille.

23 August 2017
Eleonore Faber (Michigan/Leeds)

Abstract: This is joint work with Ragnar-Olaf Buchweitz and Colin Ingalls. 
The classical McKay correspondence relates the geometry of so-called 
Kleinian surface singularities with the representation theory of finite 
subgroups of SL(2,C). M. Auslander observed an algebraic version of this 
correspondence: let G be a finite subgroup of SL(2,K) for a field K whose
characteristic does not divide the order of G. The group acts linearly on 
the polynomial ring S=K[x,y] and then the so-called skew group algebra
A=G*S can be seen as an incarnation of the correspondence. In particular
A is isomorphic to the endomorphism ring of S over the corresponding 
Kleinian surface singularity.
Our goal is to establish an analogous result when G in GL(n,K) is a finite 
subgroup generated by reflections, assuming that the characteristic
of K does not divide the order of the group. Therefore we will consider a 
quotient of the skew group ring A=S*G, where S is the polynomial ring in n 
variables. We show that our construction yelds a generalization of 
Auslander's result, and moreover, a noncommutative resolution of the 
discriminant of the reflection group G.

23 August 2017
Nadia Mazza (Lancaster)

Abstract: Joint work with Carlson, Grodal, Nakano. In this talk we will
present some recent results on an 'important' class of modular 
representations for an 'important' class of finite groups. For the 
convenience of the audience, we'll briefly review the notion of an 
endotrivial module and present the main results pertaining endotrivial 
modules and finite reductive groups which we use in our ongoing work.

23 August 2017
Dave Benson (Aberdeen)

I shall describe recent work with Srikanth Iyengar, Henning 
Krause and Julia Pevtsova on the representation theory and cohomology
of finite group schemes and finite supergroup schemes. Particular emphasis 
will be placed on the role of generic points, detection of projectivity
for modules, and detection modulo nilpotents for cohomology.


21 January 2017
Graduate Students CANCELLED

In Your Third Year & want to find out about opportunities for

summer placements and future graduate study?

Why not visit Oxford and hear from graduate students about their research


Dynamics of jumping elastic toys

Vertex models in developmental biology

Modelling of glass sheets

Glimpse into the mathematics of information

Network analysis of consumer data

Complex singularities in jet and splash flows

Complementary Lunch & Drinks Reception - TRAVEL BURSARIES AVAILABLE (up to £50)


Please RSVP to