Forthcoming events in this series


Mon, 26 May 2008

10:00 - 11:00
L3

Computation in quotients of polynomial rings and enumerative geometry

Daniel Grayson
(UIUC)
Abstract
Abstract: I will describe how computations are done using "Groebner bases" in quotient rings of polynomial rings, and I will describe explicitly the form of a particular Groebner basis for the ideal defining the ring parametrizing all factorizations of a monic polynomial of degree a+b+...+e into monic factors of degree a,b,...,e. That can be and is used in practice to compute intersection numbers involving of algebraic cycles arising as Chern classes on flag bundles of vector bundles. Simplest example: how many lines in 3-space meet four fixed lines?
Mon, 19 May 2008

12:00 - 13:00
L3

Generating Tree Amplitudes in N=4 SYM and N=8 SG

Dan Freedman
(Cambridge and MIT)
Abstract
Abstract: We study n-point tree amplitudes of N=4 super Yang-Mills theory and N=8 supergravity for general configurations of external particles of the two theories. We construct generating functions for n-point MHV and NMHV amplitudes with general external states. Amplitudes derived from them obey SUSY Ward identities, and the generating functions characterize and count amplitudes in the MHV and NMHV sectors. The MHV generating function provides an efficient way to perform the intermediate state helicity sums required to obtain loop amplitudes from trees. The NMHV generating functions rely on the MHV-vertex expansion obtained from recursion relations associated with a 3-line shift of external momenta involving a reference spinor |X]. The recursion relations remain valid for a subset of N=8 supergravity amplitudes although they do not vanish asymptotically for all |X]. The MHV-vertex expansion of the n-graviton NMHV amplitude for n=5,6,...,11 is independent of |X] and exhibits the asymptotic behavior z^{n-12}. This presages difficulties for n > 12. Generating functions show how the symmetries of supergravity can be implemented in the quadratic map between supergravity and gauge theory embodied in the KLT and other similar relations between amplitudes in the two theories.
Mon, 05 May 2008

12:00 - 13:00
L3

MHV Rules: the missing one-loop amplitudes

Paul Mansfield
(Durham)
Abstract
Abstract: I will talk about how the reformulation of perturbative Yang-Mills theory in terms of MHV rules accounts for one-loop amplitudes for gluons of the same helicity, and some of the effects of introducing a regulator.
Mon, 28 Apr 2008

12:00 - 13:00
L3

$G_2$ manifolds with isolated conical singularities

Spiro Karigiannis
(Oxford)
Abstract
Abstract: Compact $G_2$ manifolds with isolated conical singularities arise naturally in M-theory. I will discuss such manifolds, and explain a method to ``desingularize'' them by glueing in pieces of asymptotically conical $G_2$ manifolds. There are topological obstructions to such desingularizations that depend on the rate of convergence to the cone at the singularities, and on the geometry of the links of the cones. If time permits, I will also briefly discuss a new related project with Dominic Joyce which could provide the first examples of such manifolds, as well as a possible new construction of smooth compact $G_2$ manifolds.
Mon, 21 Apr 2008

12:00 - 13:00
L3

Gauge Theory, Gravity and Twistor String Scattering Amplitudes

Mohab Abou Zeid
(Institute for Mathematical Sciences)
Abstract
I will present a modification of twistor string theory which gives the spectrum of super Yang-Mills theory coupled to Einstein supergravity instead of the higher derivative conformal supergravity arising in the original twistor strings of Witten and of Berkovits. After reviewing the world-sheet formulation of the Berkovits model, I will describe the symmetries of the so-called beta-gamma systems and their gauging. I will then explain how the analysis can be applied to the construction of a family of new gauged Berkovits twistor strings which are free from world-sheet anomalies. The new theories include one with the spectrum of N=8 supergravity, two theories with the spectrum of N=4 supergravity coupled to N=4 Yang-Mills, a family of N>0 models with the spectra of self-dual supergravity coupled to self-dual super-Yang-Mills, and a non-supersymmetric string with the spectrum of self-dual gravity coupled to self-dual Yang-Mills and a scalar. Time permitting, I will discuss what is known about the interactions in the new theories.
Mon, 10 Mar 2008

11:00 - 12:00
L3

Local geometry of the G2 moduli space

Sergey Grigorian
(Cambridge)
Abstract
Abstract: We consider deformations of torsion-free $ G_2 $ structures, defined by the $ G_2 $-invariant 3-form $ \phi $ and compute the expansion of the Hodge star of $ \phi $ to fourth order in the deformations of $ \phi $. By considering M-theory compactified on a $ G_2 $ manifold, the $ G_2 $ moduli space is naturally complexified, and we get a Kahler metric on it. Using the expansion of the Hodge star of $ \phi $ we work out the full curvature of this metric and relate it to the Yukawa coupling.
Mon, 03 Mar 2008

11:00 - 12:00
L3

Seeing through the string landscape: domain walls and black holes

Dieter Luest
(LMU-Muenchen and Max Planck Institut fuer Physik)
Abstract
Abstract: We will discuss string $AdS_4$ domain wall solutions with stabilized moduli. These solutions are interesting, since they potentially induce decay processes between different vacua within the string landscape. Moreover, we discuss how black hole physics provide another tool of seeing through the vacuum landscape.
Mon, 25 Feb 2008

11:00 - 12:00
L3

String inspired progress in perturbative gauge theory

Bill Spence
(QMW)
Abstract
Abstract: We discuss the string-inspired approach to gauge theory amplitudes prompted by the work of Alday and Maldacena, in particular its application to weak coupling.
Mon, 11 Feb 2008

11:00 - 12:00
L3

Graphene and Evidence for Duality in Quantum Hall Systems

Clifford Burgess
(Mcmaster)
Abstract
Abstract: Quantum Hall systems are characterized by a spectacular set of observations (universal low-temperature conductivity, critical behaviour and semi-circle laws for transitions between Quantum Hall states) that are more robust than would be expected from the detailed theory of underlying electron dynamics. The talk starts with a summary of these observations, and their derivation from the assumption that the important charge carriers at the low energies relevant to conductivity measurements are weakly interacting particles or vortices. This implies a large emergent duality symmetry (a level two subgroup of SL(2,Z)), whose presence underlies the robustness of the observations in question. The newly-discovered and unusual Quantum Hall properties of graphene are discussed as providing a new test of this picture.
Mon, 04 Feb 2008

11:00 - 12:00
L3

Yang-Mills Theory in Twistor Space

Wen Jiang
(Oxford)
Abstract
Abstract: The alternative action for Yang-Mills theory, which Lionel Mason formulated in twistor space, explains some of the simplicities of gluon scattering amplitudes. We will review the derivation of the familiar CSW rules concerning tree-level scattering, show that the `missing' three-point amplitude can be correctly recovered and elucidate the connection with the canonical Lagrangian approach of Mansfied, Morris, et. al.
Mon, 28 Jan 2008

11:00 - 12:00
L3

Algorithmic algebraic geometry, flux vacua and the STRINGVACUA Mathematica package

James Gray
(Oxford)
Abstract
Abstract: For a large class of compactifications of interest in string phenomenology, the task of finding vacua of the four dimensional effective theories can be rewritten as a simple problem in algebraic geometry. Using recent developments in computer algebra, the task can then be rapidly dealt with in a completely algorithmic fashion. I shall review the main points of hep-th/0606122 and hep-th/0703249 in which this approach to finding vacua was set out, before moving on to a description of the Mathematica package STRINGVACUA (as described in arXiv:0801.1508 [hep-th]). This package uses the power of the computer algebra system Singular and provides a user-friendly implementation of our methods, intended for use by physicists, within the comfortable working environment of Mathematica.
Mon, 21 Jan 2008

11:00 - 12:00
L3

Mirror Mediation

Joseph Conlon
(Cambridge)
Abstract
Abstract: I show that the effective action of string compactifications has astructure that can naturally solve the supersymmetric flavour and CP problems. At leading order in the $g_s$ and $\alpha'$ expansions, the hidden sector factorises. The moduli space splits into two mirror parts that depend on K\"ahler and complex structure moduli. Holomorphy implies the flavour structure of the Yukawa couplings arises in only one part. In type IIA string theory flavour arises through the K\"ahler moduli sector and in type IIB flavour arises through the complex structure moduli sector. This factorisation gives a simple solution to the supersymmetric flavour and CP problems: flavour physics is generated in one sector while supersymmetry is broken in the mirror sector. This mechanism does not require the presence of gauge, gaugino or anomaly mediation and is explicitly realised by phenomenological models of IIB flux compactifications.
Mon, 14 Jan 2008

11:00 - 12:00
L3

Special Geometry over $\mathbb C$ and $\mathbb Q_p$

Philip Candelas
(Oxford)
Abstract
Abstract: The moduli space of Calabi-Yau manifolds have a natural geometrical structure that has come to be known as special geometry. This geometry will be reviewed in the complex context and it will be shown that much of the structure persists for p-adic Calabi-Yau manifolds.
Mon, 26 Nov 2007

11:00 - 12:00
L3

An algorithmic approach to heterotic compactification

Lara Anderson (Oxford)
Abstract
Abstract: In this talk, I will describe recent work in string phenomenology from the perspective of computational algebraic geometry. I will begin by reviewing some of the long-standing issues in heterotic model building and describe the difficult task of producing realistic particle physics from heterotic string theory. This goal can be approached by creating a large class of heterotic models which can be algorithmically scanned for physical suitability. I will outline a well-defined set of heterotic compactifications over complete intersection Calabi-Yau manifolds using the monad construction of vector bundles. Further, I will describe how a combination of analytic methods and computer algebra can provide efficient techniques for proving stability and calculating particle spectra.
Mon, 19 Nov 2007

11:00 - 12:00
L3

Hedgehog black holes and the deconfinement transition

Matt Headrick
(Stanford University)
Abstract
Abstract: The deconfinement transition in gauge theories, in which the Polyakov loop acquires a non-zero expectation value, is described in AdS/CFT as the formation of a black hole in the dual graviational theory. We will explain how to compute the free energy diagram for the Polyakov loop by a constrained gravitational path integral, leading to a new class of black hole solutions.
Mon, 12 Nov 2007

11:00 - 12:00
L3

AdS/CFT and Geometry

James Sparks
(Oxford)
Abstract
Abstract: I will give an introduction to, and overview of, the AdS/CFT correspondence from a geometric perspective. As I hope to explain, the correspondence leads to some remarkable relationships between string theory, conformal field theory, algebraic geometry, differential geometry and combinatorics.
Mon, 29 Oct 2007

11:00 - 12:00
L3

What is Twistor-String Theory

Lionel Mason
(Oxford)
Abstract
Abstract: Twistor-string theory is reformulated as a `half-twisted heterotic' theory with target $CP^3$. This in effect gives a Dolbeault formulation of a theory of holomorphic curves in twistor space and gives a clearer picture of the mathematical structures underlying the theory and how they arise from the original Witten and Berkovits models. It is also explained how space-time physics arises from the model. It intended that the lecture be, to a certain extent, pedagogical.
Wed, 24 Oct 2007

12:00 - 13:00
L3

<strong>(Note unusual day)</strong> Bows and Quivers: Instantons on ALF Spaces

Sergey Cherkis
(Trinity College Dublin)
Abstract
Abstract: Self-dual connections on ALF spaces can be encoded in terms of bow diagrams, which are natural generalizations of quivers. This provides a convenient description of the moduli spaces of these self-dual connections. We make some comments about the associated twistor data. Via the Nahm transform we construct two explicit examples: a single instanton and a single monopole on a Taub-NUT space.
Mon, 22 Oct 2007

12:00 - 13:00
L3

Exploring the Calabi-Yau Landscape Along Toric Roads

Maximilian Kreutzer
(Technical University of Vienna)
Abstract
Abstract: Toric geometry provides powerful and efficient combinatorial tools for the construction and analysis of Calabi-Yau manifolds. After recollections of the hypersurface case I present recent results on new Calabi-Yau 3-folds and their mirrors via conifold transitions, ideas for generalizations to higher codimensions and applications to string theory.
Mon, 15 Oct 2007

12:00 - 13:00
L3

Calabi-Yau Metrics and the Solutions of the Laplacian

Volker Braun
(University of Pennsylvania)
Abstract
Abstract: Following Donaldson's approach we compute the Calabi-Yau metric on quintics, a four-generation quotient, Schoen threefolds and quotients thereof. Using the explicit Calabi-Yau metric, we then compute eigenvalues and eigenmodes of the Laplace operator.
Mon, 08 Oct 2007

12:00 - 13:00
L3

Baryonic Moduli Spaces and Counting Chiral Operators in SCFT's

Amihay Hanany
(Imperial College)
Abstract
Abstract: Supersymmetric gauge theories have a spectrum of chiral operators which are preserved under at least 2 supercharges. These operators are sometimes called BPS operators in the chiral ring. The problem of counting operators in the chiral ring is reasonably simple and reveals information about the moduli space of vacua for the supersymmetric gauge theory. In this talk I will review the counting problem and present exact results on the moduli space of both mesonic and baryonic operators for a large class of gauge theories