Forthcoming events in this series


Wed, 25 Mar 2009
11:00
L3

The Cobordism Hypothesis

Jacob Lurie
(MIT)
Abstract

In this lecture, I will give a more precise statement of the Baez-Dolan cobordism hypothesis, which gives a description of framed bordism (higher) categories by a universal mapping property. I'll also describe some generalizations of the cobordism hypothesis, which take into account the structure of diffeomorphism groups of manifolds and which apply to manifolds which are not necessarily framed.

Tue, 24 Mar 2009
11:00
L3

An Overview of Higher Category Theory

Jacob Lurie
(MIT)
Abstract

In this lecture, I'll give an overview of some ideas from higher category theory which are needed to make sense of the Baez-Dolan cobordism hypothesis. If time permits, I'll present Rezk's theory of complete Segal spaces (a model for the theory of higher categories in which most morphisms are assumed to be invertible) and explain how bordism categories can be realized in this framework.

Mon, 23 Mar 2009
15:45
L2

Extended Topological Field Theories

Jacob Lurie
(MIT)
Abstract

In this lecture, I will review Atiyah's definition of a topological quantum field theory. I'll then sketch the definition of a more elaborate structure, called an "extended topological quantum field theory", and describe a conjecture of Baez and Dolan which gives a classification of these extended theories.

Mon, 09 Mar 2009
15:45
L3

The maximal number of exceptional Dehn surgeries

Marc Lackenby
(Oxford)
Abstract

I will outline the proof of two old conjectures of Cameron Gordon. The first states that the maximal number of exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 10. The second states the maximal distance between exceptional Dehn surgeries on a 1-cusped hyperbolic 3-manifold is 8. The proof uses a combination of new geometric techniques and rigorous computer-assisted calculations.

This is joint work with Rob Meyerhoff.

Mon, 02 Mar 2009
15:45
L3

The Alexander polynomial of sutured manifolds

Jacob Rasmussen
(Cambridge)
Abstract

The notion of a sutured 3-manifold was introduced by Gabai. It is a powerful tool in 3-dimensional topology. A few years ago, Andras Juhasz defined an invariant of sutured manifolds called sutured Floer homology.

I'll discuss a simpler invariant obtained by taking the Euler characteristic of this theory. This invariant turns out to have many properties in common with the Alexander polynomial. Joint work with Stefan Friedl and Andras Juhasz.

Mon, 23 Feb 2009
15:45
L3

Chromatic phenomena in equivariant stable homotopy

Neil Strickland
(Sheffield)
Abstract

There is a well-known relationship between the theory of formal group schemes and stable homotopy theory, with Ravenel's chromatic filtration and the nilpotence theorem of Hopkins, Devinatz and Smith playing a central role. It is also familiar that one can sometimes get a more geometric understanding of homotopical phenomena by examining how they interact with group actions. In this talk we will explore this interaction from the chromatic point of view.

Mon, 17 Nov 2008
15:45
L3

Around Baumslag-Solitar groups

Gilbert Levitt
Abstract

Baumslag-Solitar groups are very simple groups which are not Hopfian (they are isomorphic to proper quotients). I will discuss these groups, as well as their obvious generalizations, with emphasis on their automorphisms and their generating sets

Mon, 10 Nov 2008
15:45
L3

Fibrations with non-commutative fibres

Siegfried Echterhoff
(Goettingen)
Abstract

We study non-commutative analogues of Serre-ï¬~Abrations in topology. We shall present several examples of such ï¬~Abrations and give applications for the computation of the K-theory of certain C*-algebras. (Joint work with Ryszard Nest and Herve Oyono-Oyono.)

Mon, 03 Nov 2008
15:45
L3

Indecomposable PD_3-complexes

Jonathan Hillman
(Sydney and Durham)
Abstract

$PD$-complexes model the homotopy theory of manifolds.

In dimension 3, the unique factorization theorem holds to the extent that a $PD_3$-complex is a connected sum if and only if its fundamental group is a free product, and the indecomposables are aspherical or have virtually free fundamental group [Tura'ev,Crisp]. However in contrast to the 3-manifold case the group of an indecomposable may have infinitely many ends (i.e., not be virtually cyclic). We shall sketch the construction of one such example, and outline some recent work using only group theory that imposes strong restrictions on any other such examples.

Mon, 20 Oct 2008
16:45
L3

"Simple platonic polygonal complexes."

Ian Leary
(Ohio State; visitin Bristol)
Abstract

We classify 2-dimensional polygonal complexes that are simply connected, platonic (in the sense that they admit a flag-transitive group of symmetries) and simple (in the sense that each vertex link is a complete graph).  These are a natural generalization of the 2-skeleta of simple polytopes.

Our classification is complete except for some existence questions for complexes made from squares and pentagons.

(Joint with Tadeusz Januszkiewicz, Raciel Valle and Roger Vogeler.)

Mon, 20 Oct 2008
15:30
L3

"Lattices acting on Platonic polygonal complexes and Fuchsian buildings"

Anne Thomas
(Cornell)
Abstract

A polygonal complex $X$ is Platonic if its automorphism group $G$ acts transitively on the flags (vertex, edge, face) in $X$. Compact examples include the boundaries of Platonic solids.  Noncompact examples $X$ with nonpositive curvature (in an appropriate sense) and three polygons meeting at each edge were classified by \'Swi\c{a}tkowski, who also determined when the group $G=Aut(X)$, equipped with the compact-open topology, is nondiscrete.  For example, there is a unique $X$ with the link of each vertex the Petersen graph, and in this case $G$ is nondiscrete.  A Fuchsian building is a two-dimensional also determined when the group $G=Aut(X)$, equipped with the compact-open topology, is nondiscrete.  For example, there is a unique $X$ with the link of each vertex the Petersen graph, and in this case $G$ is nondiscrete.  A Fuchsian building is a two-dimensional hyperbolic building.  We study lattices in automorphism groups of Platonic complexes and Fuchsian buildings.  Using similar methods for both cases, we construct uniform and nonuniform lattices in $G=Aut(X)$.  We also show that for some $X$ the set of covolumes of lattices in $G$ is nondiscrete, and that $G$ admits lattices which are not finitely generated.  In fact our results apply to the larger class of Davis complexes, which includes examples in dimension > 2.

Mon, 20 Oct 2008

14:15 - 14:45
L3

"Fibered 3-manifolds and twisted Alexander polynomials"

Stefan Friedl
(Warwick)
Abstract

It is a classical result that the Alexander polynomial of a fibered knot has to be monic. But in general the converse does not hold, i.e. the Alexander polynomial does not detect fibered knots. We will show that the collection of all twisted Alexander polynomials (which are a natural generalization of the ordinary Alexander polynomial) detect fibered 3-manifolds.

As a corollary it follows that given a 3-manifold N the product S1 x N is symplectic if and only if N is fibered.