Forthcoming events in this series


Mon, 31 May 2021

15:45 - 16:45
Virtual

Classifying spaces of low-dimensional bordism categories

Jan Steinebrunner
(University of Oxford)
Abstract

The d-dimensional bordism category Cob_d has as objects closed (d-1)-manifolds and as morphisms diffeomorphism classes of d-dimensional bordisms. For d=1 and d=2 this category is well understood because we have a complete list of all 1 or 2-manifolds with boundary. In this talk I will argue that the categories Cob_1 and Cob_2 nevertheless carry a lot of interesting structure. 

I will show that the classifying spaces B(Cob_1) and B(Cob_2) contain interesting moduli spaces coming from the combinatorics of how 1 or 2 manifolds can be glued along their boundary. In particular, I will introduce the notion of a "factorisation category" and explain how it relates to Connes' cyclic category for d=1 and to the moduli space of tropical curves for d=2. If time permits, I will sketch how this relates to the curve complex and moduli spaces of complex curves.

Mon, 24 May 2021

15:45 - 16:45
Virtual

tmf resolutions

Mark Behrens
(University of Notre Dame)
Abstract

I will discuss recent progress on understanding the tmf-based Adams spectral sequence, where tmf = topological modular forms.  The idea is to generalize the work of Mahowald and others in the context of bo-resolutions.  The work I will discuss is joint with Prasit Bhattacharya, Dominic Culver, and J.D. Quigley.

Mon, 17 May 2021

15:45 - 16:45
Virtual

Tail equivalence of unicorn paths

Piotr Przytycki
(McGill University)
Abstract

Let S be an orientable surface of finite type. Using Pho-On's infinite unicorn paths, we prove the hyperfiniteness of the orbit equivalence relation coming from the action of the mapping class group of S on the Gromov boundary of the arc graph of S. This is joint work with Marcin Sabok.

Mon, 10 May 2021

15:45 - 16:45
Virtual

Exponential mixing of the geodesic flow on geometrically finite hyperbolic manifolds

Samuel Edwards
(Yale University)
Abstract

The geodesic flow on hyperbolic finite-volume hyperbolic manifolds is a particularly well-studied dynamical system; this is in part due to its connection to other important dynamical systems on the manifold, as well as orbital counting and other number-theoretic problems related to discrete subgroups of orthogonal groups. In recent years, there has been some interest in generalizing many of the properties of the geodesic flow on finite-volume manifolds to the infinite-volume setting. I will discuss joint work with Hee Oh in which we establish exponential mixing of the geodesic flow on infinite-volume geometrically finite hyperbolic manifolds with large enough critical exponent. Patterson-Sullivan densities and Burger-Roblin measures, the Lax-Phillips spectral gap for the Laplace operator on infinite volume geometrically finite hyperbolic manifolds, and complementary series representations are all involved in both the statement and proof of our result, and I will try to explain how these different objects are related in this setting.

Mon, 03 May 2021

15:45 - 16:45
Virtual

Unknotting number and satellites

Jennifer Hom
(Georgia Tech)
Abstract

The unknotting number of a knot is the minimum number of crossing changes needed to untie the knot. It is one of the simplest knot invariants to define, yet remains notoriously difficult to compute. We will survey some basic knot theory invariants and constructions, including the satellite knot construction, a straightforward way to build new families of knots. We will give a lower bound on the unknotting number of certain satellites using knot Floer homology. This is joint work in progress with Tye Lidman and JungHwan Park.

Mon, 26 Apr 2021

15:45 - 16:45
Virtual

Classifying simple amenable C*-algebras

Stuart White
(University of Oxford)
Abstract

C*-algebras provide non commutative analogues of locally compact Hausdorff spaces. In this talk I’ll provide a survey of the large scale project to classify simple amenable C*-algebras, indicating the role played by non commutative versions of topological ideas. No prior knowledge of C*-algebras will be assumed.

Mon, 15 Mar 2021

15:45 - 16:45
Virtual

Unknot recognition in quasi-polynomial time

Marc Lackenby
(University of Oxford)
Abstract

I will outline a new algorithm for unknot recognition that runs in quasi-polynomial time. The input is a diagram of a knot with n crossings, and the running time is n^{O(log n)}. The algorithm uses hierarchies, normal surfaces and Heegaard splittings.

Mon, 08 Mar 2021

15:45 - 16:45
Virtual

Conformal blocks for vertex operator algebras, sewing and factorization.

Bin Gui
(Rutgers University)
Abstract

In rational conformal field theory, the sewing and factorization properties are probably the most important properties that conformal blocks satisfy. For special examples such as Weiss-Zumino-Witten models and minimal models, these two properties were proved decades ago (assuming the genus is ≤1 for the sewing theorem). But for general (strongly) rational vertex operator algebras (VOAs), their proofs were finished only very recently. In this talk, I will first motivate the definition of conformal blocks and VOAs using Segal's picture of CFT. I will then explain the importance of Sewing and Factorization Theorem in the construction of full rational conformal field theory.

Mon, 01 Mar 2021

15:45 - 16:45
Virtual

Quasi-isometric rigidity of generic cyclic HNN extensions of free groups

Sam Shepherd
(University of Oxford)
Abstract

Studying quasi-isometries between groups is a major theme in geometric group theory. Of particular interest are the situations where the existence of a quasi-isometry between two groups implies that the groups are equivalent in a stronger algebraic sense, such as being commensurable. I will survey some results of this type, and then talk about recent work with Daniel Woodhouse where we prove quasi-isometric rigidity for certain graphs of virtually free groups, which include "generic" cyclic HNN extensions of free groups.

Mon, 22 Feb 2021

15:45 - 16:45
Virtual

Chromatic homotopy theory and algebraic K-theory

Akhil Matthew
(University of Chicago)
Abstract

I will give an overview of the interactions between chromatic homotopy theory and the algebraic K-theory of ring spectra, especially around the subject of Ausoni-Rognes's principle of "chromatic redshift," and some of the recent advances in this field.

Mon, 15 Feb 2021

15:45 - 16:45
Virtual

The singularity category of C^*(BG)

John Greenlees
(Warwick University)
Abstract

For an ordinary commutative Noetherian ring R we would define the singularity category to be the quotient of the (derived category of) finitely generated modules modulo the (derived category of) fg projective modules [``the bounded derived category modulo compact objects’’]. For a ring spectrum like C^*(BG) (coefficients in a field of characteristic p) it is easy to define the module category and the compact objects, but finitely generated objects need a new definition. The talk will describe the definition and show that the singularity category is trivial exactly when G is p-nilpotent. We will go on to describe the singularity category for groups with cyclic Sylow p-subgroup.

Mon, 08 Feb 2021

15:45 - 16:45
Virtual

Veering triangulations and related polynomial invariants

Anna Parlak
(University of Warwick)
Abstract

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. During the talk I will discuss how and why it is connected to the Alexander polynomial of the underlying manifold.  

Mon, 01 Feb 2021

15:45 - 16:45
Virtual

Introduction to Hierarchically Hyperbolic Groups

Davide Spriano
(University of Oxford)
Abstract

Hierarchically Hyperbolic Groups (HHGs) were introduced by Behrstock—Hagen—Sisto to provide a common framework to study several groups of interest in geometric group theory, and have been an object of great interest in the area ever since. The goal of the talk is to provide an introduction to the theory of HHGs and discuss the advantages of the unified approach that they provide. If time permits, we will conclude with applications to growth and asymptotic cones of groups.

Mon, 25 Jan 2021

15:45 - 16:45
Virtual

The Friedl-Tillmann polytope

Dawid Kielak
(University of Oxford)
Abstract

I will introduce the Friedl-Tillmann polytope for one-relator groups, and then discuss how it can be generalised to the Friedl-Lück polytope, how it connects to the Thurston polytope, and how we can view it as a convenient source of intuition and ideas.

Mon, 18 Jan 2021

15:45 - 16:45
Virtual

E∞-algebras and general linear groups

Oscar Randal-Williams
(Cambridge University)
Abstract

I will discuss joint work with S. Galatius and A. Kupers in which we investigate the homology of general linear groups over a ring $A$ by considering the collection of all their classifying spaces as a graded $E_\infty$-algebra. I will first explain diverse results that we obtained in this investigation, which can be understood without reference to $E_\infty$-algebras but which seem unrelated to each other: I will then explain how the point of view of cellular $E_\infty$-algebras unites them.

Mon, 30 Nov 2020
15:45
Virtual

Right-angled Artin subgroup of Artin groups

Kasia Jankiewicz
(University of Chicago)
Abstract

Artin groups are a family of groups generalizing braid groups. The Tits conjecture, which was proved by Crisp-Paris, states that squares of the standard generators generate an obvious right-angled Artin subgroup. In a joint work with Kevin Schreve, we consider a larger collection of elements, and conjecture that their sufficiently large powers generate an obvious right-angled Artin subgroup. In the case of the braid group, regarded as a mapping class group of a punctured disc, these elements correspond to Dehn twist around the loops enclosing multiple consecutive punctures. This alleged right-angled Artin group is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for some classes of Artin groups. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.

Mon, 23 Nov 2020
15:45
Virtual

Constructing examples of infinity operads: a study of normalised cacti

Luciana Bonatto
(University of Oxford)
Abstract

Operads are tools to encode operations satisfying algebro-homotopic relations. They have proved to be extremely useful tools, for instance for detecting spaces that are iterated loop spaces. However, in many natural examples, composition of operations is only associative up to homotopy and operads are too strict to captured these phenomena. This leads to the notion of infinity operads. While they are a well-established tool, there are few examples of infinity operads in the literature that are not the nerve of an actual operad. I will introduce new topological operad of bracketed trees that can be used to identify and construct natural examples of infinity operads. The key example for this talk will be the normalised cacti model for genus 0 surfaces.

Glueing surfaces along their boundaries defines composition laws that have been used to construct topological field theories and to compute the homology of the moduli space of Riemann surfaces. Normalised cacti are a graphical model for the moduli space of genus 0 oriented surfaces. They are endowed with a composition that corresponds to glueing surfaces along their boundaries, but this composition is not associative. By using the operad of bracketed trees, I will show that this operation is associative up to all higher homotopies and hence that normalised cacti form an infinity operad.

Mon, 16 Nov 2020
15:45
Virtual

Cohomology of group theoretic Dehn fillings

Bin Sun
(University of Oxford)
Abstract

We study a group theoretic analog of Dehn fillings of 3-manifolds and derive a spectral sequence to compute the cohomology of Dehn fillings of hyperbolically embedded subgroups. As applications, we generalize the results of Dahmani-Guirardel-Osin and Hull on SQ-universality and common quotients of acylindrically hyperbolic groups by adding cohomological finiteness conditions. This is a joint work with Nansen Petrosyan.

Mon, 09 Nov 2020
15:45
Virtual

Triangle presentations and tilting modules for SL(n)

Corey Jones
(University of North Carolina)
Abstract

Triangle presentations are combinatorial structures on finite projective geometries which characterize groups acting simply transitively on the vertices of locally finite affine A_n buildings. From this data, we will show how to construct new fiber functors on the category of tilting modules for SL(n+1) in characteristic p (related to order of the projective geometry) using the web calculus of Cautis, Kamnitzer, Morrison and Brundan, Entova-Aizenbud, Etingof, Ostrik.

Mon, 02 Nov 2020
15:45
Virtual

Isotopy in dimension 4

Ryan Budney
(University of Victoria)
Abstract

The main result is the existence of smooth, properly embedded 3-discs in S¹ × D³ that are not smoothly isotopic to {1} × D³. We describe a 2-variable Laurent polynomial invariant of 3-discs in S¹ × D³. This allows us to show that, when taken up to isotopy, such 3-discs form an abelian group of infinite rank. Joint work with David Gabai.

Mon, 26 Oct 2020
15:45
Virtual

Homological duality: jumping loci, propagation, realization

Laurentiu Maxim
(University of Wisconsin-Madison)
Abstract

I will discuss recent progress on the study of homological duality properties of complex algebraic manifolds, with a view towards the projective Singer-Hopf conjecture. (Joint work with Y. Liu and B. Wang.)

Mon, 19 Oct 2020
16:00
Virtual

The Universe from a single particle (apologies to William Blake)

Michael Freedman
(Microsoft Research)
Abstract

In Joint work with Modj Shokrian-Zini we study (numerically) our proposal that interacting physics can arise from single particle quantum Mechanics through spontaneous symmetry breaking SSB. The staring point is the claim the difference between single and many particle physics amounts to the probability distribution on the space of Hamiltonians. Hamiltonians for interacting systems seem to know about some local, say qubit, structure, on the Hilbert space, whereas typical QM systems need not have such internal structure. I will discuss how the former might arise from the latter in a toy model. This story is intended as a “prequel” to the decades old reductionist story in which low energy standard model physics is supposed to arise from something quite different at high energy. We ask the question: Can interacting physics itself can arise from something simpler.

Mon, 12 Oct 2020
15:45
Virtual

Teichmuller flow and complex geometry of Moduli spaces

Vlad Marković
(University of Oxford)
Abstract

I will discuss connections between ambient geometry of Moduli spaces and Teichmuller dynamics. This includes the recent resolution of the Siu's conjecture about convexity of Teichmuller spaces, and the (conjectural) topological description of the Caratheodory metric on Moduli spaces of Riemann surfaces.

Mon, 22 Jun 2020
15:45
Virtual

Weil-Petersson geodesics and geometry of 3-manifolds

Yair Minsky
(Yale University)
Abstract

There is a well-known correspondence between Weil-Petersson geodesic loops in the moduli space of a surface S and hyperbolic 3-manifolds fibering over the circle with fibre S. Much is unknown, however, about the detailed relationship between geometric features of the loops and those of the 3-manifolds.

In work with Leininger-Souto-Taylor we study the relation between WP length and 3-manifold volume, when the length (suitably normalized) is bounded and the fiber topology is unbounded. We obtain a WP analogue of a theorem proved by Farb-Leininger-Margalit for the Teichmuller metric. In work with Modami, we fix the fiber topology and study connections between the thick-thin decomposition of a geodesic loop and that of the corresponding 3-manifold. While these decompositions are often in direct correspondence, we exhibit examples where the correspondence breaks down. This leaves the full conjectural picture somewhat mysterious, and raises many questions. 

Mon, 15 Jun 2020

15:45 - 16:45
Virtual

Smooth Open-Closed Field Theories from Gerbes and D-Branes

Severin Bunk
(University of Hamburg)
Abstract

In this talk I will present results from an ongoing joint research  program with Konrad Waldorf. Its main goal is to understand the  relation between gerbes on a manifold M and open-closed smooth field  theories on M. Gerbes can be viewed as categorified line bundles, and  we will see how gerbes with connections on M and their sections give  rise to smooth open-closed field theories on M. If time permits, we  will see that the field theories arising in this way have several characteristic properties, such as invariance under thin homotopies,  and that they carry positive reflection structures. From a physical  perspective, ourconstruction formalises the WZW amplitude as part of  a smooth bordism-type field theory.

Mon, 08 Jun 2020
15:45
Virtual

The rates of growth in a hyperbolic group

Zlil Sela
(Hebrew University of Jerusalem)
Abstract

We study the countable set of rates of growth of a hyperbolic 
group with respect to all its finite generating sets. We prove that the 
set is well-ordered, and that every real number can be the rate of growth 
of at most finitely many generating sets up to automorphism of the group.

We prove that the ordinal of the set of rates of growth is at least $ω^ω$, 
and in case the group is a limit group (e.g., free and surface groups), it 
is $ω^ω$.

We further study the rates of growth of all the finitely generated 
subgroups of a hyperbolic group with respect to all their finite 
generating sets. This set is proved to be well-ordered as well, and every 
real number can be the rate of growth of at most finitely many isomorphism 
classes of finite generating sets of subgroups of a given hyperbolic 
group. Finally, we strengthen our results to include rates of growth of 
all the finite generating sets of all the subsemigroups of a hyperbolic 
group.

Joint work with Koji Fujiwara.

Mon, 01 Jun 2020
15:45
Virtual

Trying to understand mapping class groups of algebraic surfaces from the Thurstonian point of view

Benson Farb
(University of Chicago)
Abstract

In some ways the theory of mapping class groups of 4-manifolds is in 2020 at the same place where the theory of mapping class groups of 2-manifolds was in 1973, before Thurston changed everything.  In this talk I will describe some first steps in an ongoing joint project with Eduard Looijenga where we are trying to understand mapping class groups of certain algebraic surfaces (e.g. rational elliptic surfaces, and also K3 surfaces) from the Thurstonian point of view.

Mon, 18 May 2020
15:45
Virtual

Boundaries and 3-dimensional topological field theories

Dan Freed
(University of Texas at Austin)
Abstract

Just as differential equations often boundary conditions of various types, so too do quantum field theories often admit boundary theories. I will explain these notions and then discuss a theorem proved with Constantin Teleman, essentially characterizing certain 3-dimensional topological field theories which admit nonzero boundary theories. One application is to gapped systems in condensed matter physics.

Mon, 11 May 2020
15:45
Virtual

Torus knots in contact topology

Irena Matkovic
(Oxford)
Abstract

Tight contact structures on knot complements arise both from Legendrian realizations of the knot in the standard tight contact structure and from the non-loose Legendrian realizations in the overtwisted structures on the sphere. In this talk, we will deal with negative torus knots. We wish to concentrate on the relations between these various Legendrian realizations of a knot and the contact structures on the surgeries along the knot. In particular, we will build every contact structure by a single Legendrian surgery, and relate the knot properties to the properties of surgeries; namely, tightness, fillability and non-vanishing Heegaard Floer invariant.

Mon, 04 May 2020
15:45
Virtual

Virtually algebraically fibered congruence subgroups

Ian Agol
(UC Berkeley)
Abstract

Addressing a question of Baker and Reid,

we give a criterion to show that an arithmetic group 

has a congruence subgroup that is algebraically

fibered. Some examples to which the criterion applies

include a hyperbolic 4-manifold group containing infinitely

many Bianchi groups, and a complex hyperbolic surface group.

This is joint work with Matthew Stover.

Mon, 27 Apr 2020
15:45
Virtual

On homological stability for configuration-section spaces

Martin Palmer
(IMAR)
Abstract

For a bundle E over a manifold M, the associated "configuration-section spaces" are spaces of configurations of points in M together with a section of E over the complement of the configuration. One often considers subspaces where the behaviour of the section near a configuration point -- a kind of "monodromy" -- is restricted or prescribed. These are examples of "non-local configuration spaces", and may be interpreted physically as moduli spaces of "fields with prescribed singularities" in an ambient manifold.

An important class of examples is given by Hurwitz spaces, which are moduli spaces of branched G-coverings of the 2-disc, and which are homotopy equivalent to certain configuration-section spaces on the 2-disc. Ellenberg, Venkatesh and Westerland proved that, under certain conditions, Hurwitz spaces are (rationally) homologically stable; from this they then deduced an asymptotic version of the Cohen-Lenstra conjecture for function fields, a purely number-theoretical result.

We will discuss another homological stability result for configuration-section spaces, which holds (with integral coefficients) whenever the base manifold M is connected and open. We will also show that the "stabilisation maps" are split-injective (in all degrees) whenever dim(M) is at least 3 and M is either simply-connected or its handle dimension is at most dim(M) - 2.

This represents joint work with Ulrike Tillmann.

Mon, 09 Mar 2020
15:45
L6

Non-uniquely ergodic arational trees in the boundary of Outer space

Radhika Gupta
(Bristol University)
Abstract

The mapping class group of a surface is associated to its Teichmüller space. In turn, its boundary consists of projective measured laminations. Similarly, the group of outer automorphisms of a free group is associated to its Outer space. Now the boundary contains equivalence classes of arationaltrees as a subset. There exist distinct projective measured laminations that have the same underlying geodesic lamination, which is also minimal and filling. Such geodesic laminations are called `non-uniquely ergodic'. I will talk briefly about laminations on surfaces and then present a construction of non-uniquely ergodic phenomenon for arational trees. This is joint work with Mladen Bestvina and Jing Tao.

Mon, 02 Mar 2020
15:45
L6

Obstructing isotopies between surfaces in four manifolds

Hannah Schwartz
(Max Planck Institute Bonn)
Abstract

We will first construct pairs of homotopic 2-spheres smoothly embedded in a 4-manifold that are smoothly equivalent (via an ambient diffeomorphism preserving homology) but not even topologically isotopic. Indeed, these examples show that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis. We will proceed to discuss two distinct ways of obstructing such an isotopy, as well as related invariants which can be used to obstruct an isotopy between pairs of properly embedded disks (rather than spheres) in a 4-manifold.

Mon, 24 Feb 2020
15:45
L6

Square pegs and non-orientable surfaces

Marco Golla
(Universite de Nantes)
Abstract

The square peg problem asks whether every Jordan curve in the
plane contains the vertices of a square. Inspired by Hugelmeyer's approach
for smooth curves, we give a topological proof for "locally 1-Lipschitz"
curves using 4-dimensional topology.

Mon, 17 Feb 2020
15:45
L6

Coarse geometry of spaces and groups

David Hume
(Oxford University)
Abstract


Given two metric spaces $X$ and $Y$, it is natural to ask how faithfully, from the point of view of the metric, one can embed $X$ into $Y$. One way of making this precise is asking whether there exists a coarse embedding of $X$ into $Y$. Positive results are plentiful and diverse, from Assouad's embedding theorem for doubling metric spaces to the elementary fact that any finitely generated subgroup of a finitely generated group is coarsely embedded with respect to word metrics. Moreover, the consequences of admitting a coarse embedding into a sufficiently nice space can be very strong. By contrast, there are few invariants which provide obstructions to coarse embeddings, leaving many seemingly elementary geometric questions open.
I will present new families of invariants which resolve some of these questions. Highlights of the talk include a new algebraic dichotomy for connected unimodular Lie groups, and a method of calculating a lower bound on the conformal dimension of a compact Ahlfors-regular metric space.
 

Mon, 10 Feb 2020
15:45
L6

Variants of Quantum sl(2) and invariants of links involving flat connections

Christian Blanchet
(Institut de Mathématiques de Jussieu (Paris 7))
Abstract

Witten-Reshetikhin-Turaev quantum invariants of links and 3 dimensional manifolds are obtained from quantum sl(2). There exist different versions of quantum sl(2) leading to other families of invariants. We will briefly overview the original construction and then discuss two variants. First one, so called unrolled quantum sl(2), allows construction of invariants of 3-manifolds involving C* flat connections. In simplest case it recovers Reidemeister torsion. The second one is the non restricted version at a root of unity. It enables construction of invariants of links equipped with a gauge class of SL(2,C) flat connection. This is based respectively on joined work with Costantino, Geer, Patureau and Geer, Patureau, Reshetikhin.

Mon, 03 Feb 2020
15:45
L6

The complexity of knot genus problem in 3-manifolds

Mehdi Yazdi
(Oxford University)
Abstract

The genus of a knot in a 3-manifold is defined to be the minimum genus of a compact, orientable surface bounding that knot, if such a surface exists. We consider the computational complexity of determining knot genus. Such problems have been studied by several mathematicians; among them are the works of Hass--Lagarias--Pippenger, Agol--Hass--Thurston, Agol and Lackenby. For a fixed 3-manifold the knot genus problem asks, given a knot K and an integer g, whether the genus of K is equal to g. In joint work with Lackenby, we prove that for any fixed, compact, orientable 3-manifold, the knot genus problem lies inNP, answering a question of Agol--Hass--Thurston from 2002. Previously this was known for rational homology 3-spheres by the work of Lackenby.

 

Mon, 27 Jan 2020
15:45
L6

Commensurable coHopficity and hyperbolic groups

Daniel Woodhouse
(Oxford University)
Abstract


A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.
This is joint work with Emily Stark.
 

Mon, 20 Jan 2020
15:45
L6

Algorithms for infinite linear groups: methods and applications

Alla Detinko
(Mathematics Dept., University of Hull)
Abstract

In this talk we will survey a novel domain of computational group theory: computing with linear groups over infinite fields.  We will provide an introduction to the area, and will discuss available methods and algorithms. Special consideration is given to algorithms for Zariski dense subgroups. This includes a computer realization of the strong approximation theorem, and algorithms for arithmetic groups. We illustrate applications of our methods to the solution of problems further afield by computer experimentation.

Fri, 10 Jan 2020
15:45
L6

TBA

Christian Blanchet
(Institut de Mathématiques de Jussieu (Paris 7))
Mon, 02 Dec 2019
15:45
L6

A cellular decomposition of the Fulton Mac Pherson operad

Paolo Salvatore
(University of Rome `Tor Vergata')
Abstract

We construct a cellular decomposition of the
Axelrod-Singer-Fulton-MacPherson compactification of the configuration
spaces in the plane, that is compatible with the operad composition.
Cells are indexed by trees with bi-coloured edges, and vertices are labelled by 
cells of the cacti operad. This answers positively a conjecture stated in 
2000 by Kontsevich and Soibelman.

Mon, 25 Nov 2019
15:45
L6

Irrationality and monodromy for cubic threefolds

Ivan Smith
(Cambridge)
Abstract

The homological monodromy of the universal family of cubic threefolds defines a representation of a certain Artin-type group into the symplectic group Sp(10;\Z). We use Thurston’s classification of surface automorphisms to prove this does not factor through the genus five mapping class group.  This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds, as established by Clemens and Griffiths.
 

Mon, 18 Nov 2019
15:45
L6

On the smooth mapping class group of the 4-sphere

David Gay
(University of Georgia/MPIM Bonn)
Abstract

The smooth mapping class group of the 4-sphere is pi_0 of the space of orientation preserving self-diffeomorphisms of S^4. At the moment we have no idea whether this group is trivial or not. Watanabe has shown that higher homotopy groups can be nontrivial. Inspired by Watanabe's constructions, we'll look for interesting self-diffeomorphisms of S^4. Most of the talk will be an outline for a program to find a nice geometric generating set for this mapping class group; a few small steps in the program are actually theorems. The point of finding generators is that if they are explicit enough then you have a hope of either showing that they are all trivial or finding an invariant that is well adapted to obstructing triviality of these generators.

Mon, 11 Nov 2019
15:45
L6

The Witt vectors with coefficients

Emanuele Dotto
(University of Warwick)
Abstract

We will introduce the Witt vectors of a ring with coefficients in a bimodule and use them to calculate the components of the Hill-Hopkins-Ravenel norm for cyclic p-groups. This algebraic construction generalizes Hesselholt's Witt vectors for non-commutative rings and Kaledin's polynomial Witt vectors over perfect fields. We will discuss applications to the characteristic polynomial over non-commutative rings and to the Dieudonné determinant. This is all joint work with Krause, Nikolaus and Patchkoria.

Mon, 04 Nov 2019
15:45
L6

The Euler characteristic of Out(F_n) and renormalized topological field theory

Michael Borinsky
(Nikhef)
Abstract

I will report on recent joint work with Karen Vogtmann on the Euler characteristic of $Out(F_n)$ and the moduli space of graphs. A similar study has been performed in the seminal 1986 work of Harer and Zagier on the Euler characteristic of the mapping class group and the moduli space of curves. I will review a topological field theory proof, due to Kontsevich, of Harer and Zagier´s result and illustrate how an analogous `renormalized` topological field theory argument can be applied to $Out(F_n)$.

Mon, 28 Oct 2019
15:45
L6

Towards Higher Morse-Cerf Theory: Classifying Constructible Bundles on R^n

Christoph Dorn
(Oxford)
Abstract

We present a programme towards a combinatorial language for higher (stratified) Morse-Cerf theory. Our starting point will be the interpretation of a Morse function as a constructible bundle (of manifolds) over R^1. Generalising this, we describe a surprising combinatorial classification of constructible bundles on flag foliated R^n (the latter structure of a "flag foliation” is needed for us to capture the notions of "singularities of higher Morse-Cerf functions" independently of differentiable structure). We remark that flag foliations can also be seen to provide a notion of directed topology and in this sense higher Morse-Cerf singularities are closely related to coherences in higher category theory. The main result we will present is the algorithmic decidability of existence of mutual refinements of constructible bundles. Using this result, we discuss how "combinatorial stratified higher Morse-Cerf theory" opens up novel paths to the computational treatment of interesting questions in manifold topology.

Mon, 21 Oct 2019
15:45
L6

Lower bounds on the tunnel number of composite spatial theta graphs

Scott Taylor
(Colby College)
Abstract

The tunnel number of a graph embedded in a 3-dimensional manifold is the fewest number of arcs needed so that the union of the graph with the arcs has handlebody exterior. The behavior of tunnel number with respect to connected sum of knots can vary dramatically, depending on the knots involved. However, a classical theorem of Scharlemann and Schultens says that the tunnel number of a composite knot is at least the number of factors. For theta graphs, trivalent vertex sum is the operation which most closely resembles the connected sum of knots. The analogous theorem of Scharlemann and Schultens no longer holds, however. I will provide a sharp lower bound for the tunnel number of composite theta graphs, using recent work on a new knot invariant which is additive under connected sum and trivalent vertex sum. This is joint work with Maggy Tomova.

Mon, 14 Oct 2019
15:45
L6

Uryson width and volume

Panos Papasoglu
(Oxford)
Abstract

I will give a brief survey of some problems in curvature free geometry and sketch

a new proof of the following:

Theorem (Guth). There is some $\delta (n)>0$ such that if $(M^n,g)$ is a closed aspherical Riemannian manifold and $V(R)$ is the volume of the largest ball of radius $R$ in the universal cover of $M$, then $V(R)\geq \delta(n)R^n$ for all $R$.

I will also discuss some recent related questions and results.

Mon, 07 Oct 2019
15:45
L6

Action rigidity for free products of hyperbolic manifold groups

Emily Stark
(University of Utah)
Abstract

The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry with G is abstractly commensurable to G. For example, a closed hyperbolic n-manifold group is not action rigid for all n at least three. In contrast, we show that free products of closed hyperbolic manifold groups are action rigid. Consequently, we obtain the first examples of Gromov hyperbolic groups that are quasi-isometric but do not virtually have a common model geometry. This is joint work with Daniel Woodhouse.

Mon, 24 Jun 2019
15:45
L6

Derived modular functors

Lukas Jannik Woike
(Hamburg)
Abstract

 For a semisimple modular tensor category the Reshetikhin-Turaev construction yields an extended three-dimensional topological field theory and hence by restriction a modular functor. By work of Lyubachenko-Majid the construction of a modular functor from a modular tensor category remains possible in the non-semisimple case. We explain that the latter construction is the shadow of a derived modular functor featuring homotopy coherent mapping class group actions on chain complex valued conformal blocks and a version of factorization and self-sewing via homotopy coends. On the torus we find a derived version of the Verlinde algebra, an algebra over the little disk operad (or more generally a little bundles algebra in the case of equivariant field theories). The concepts will be illustrated for modules over the Drinfeld double of a finite group in finite characteristic. This is joint work with Christoph Schweigert (Hamburg).