Tue, 17 Jun 2025
15:30
L4

Quivers and curves in higher dimensions

Hulya Arguz
(University of Georgia)
Abstract

Quiver Donaldson-Thomas invariants are integers determined by the geometry of moduli spaces of quiver representations. I will describe a correspondence between quiver Donaldson-Thomas invariants and Gromov-Witten counts of rational curves in toric and cluster varieties. This is joint work with Pierrick Bousseau.

Tue, 17 Jun 2025
15:00
L6

Density of Green metrics for hyperbolic groups

Didac Martinez-Granado
Abstract
I will present the "space of metrics of a group'', a metric space parameterizing the geometric actions of
an arbitrary hyperbolic group on Gromov hyperbolic spaces. Even for the surface group case, this space is much larger than
the classical Teichmüller space, encompassing negatively curved Riemannian metrics, geodesic currents,
random walks, and more. I will discuss how Green metrics—those associated with admissible random walks on the group—are dense in
 the space of metrics.  This is joint work in progress with Stephen Cantrell and Eduardo Reyes.
Tue, 17 Jun 2025
14:00
C6

Lagrangian mean curvature flow out of conical singularities

Spandan Ghosh
(University of Oxford)
Abstract

Lagrangian mean curvature flow (LMCF) is a way to deform Lagrangian submanifolds inside a Calabi-Yau manifold according to the negative gradient of the area functional. There are influential conjectures about LMCF due to Thomas-Yau and Joyce, describing the long-time behaviour of the flow, singularity formation, and how one may flow past singularities. In this talk, we will show how to flow past a conically singular Lagrangian by gluing in expanders asymptotic to the cone, generalizing an earlier result by Begley-Moore. We solve the problem by a direct P.D.E.-based approach, along the lines of recent work by Lira-Mazzeo-Pluda-Saez on the network flow. The main technical ingredient we use is the notion of manifolds with corners and a-corners, as introduced by Joyce following earlier work of Melrose.

Tue, 17 Jun 2025

14:00 - 15:00
L4

The Maze Problem

Imre Leader
(University of Cambridge)
Abstract

Do there exist universal sequences for all mazes on the two-dimensional integer lattice? We will give background on this question, as well as some recent results. Joint work with Mariaclara Ragosta.

Tue, 17 Jun 2025
14:00
L6

A Reconstruction Theorem for coadmissible D-cap-modules

Finn Wiersig
(National University of Singapore)
Abstract

Let X be a smooth rigid-analytic variety. Ardakov and Wadsley introduced the sheaf D-cap of infinite order differential operators on X, along with the category of coadmissible D-cap-modules. In this talk, we present a Riemann–Hilbert correspondence for these coadmissible D-cap-modules. Specifically, we interpret a coadmissible D-cap-module as a p-adic differential equation, explain what it means to solve such an equation, and describe how to reconstruct the module from its solutions.

Tue, 17 Jun 2025
13:00
L2

Applications of Equivariant Localization in Supergravity

Christopher Couzens
(Oxford)
Abstract

Einstein’s equations are difficult to solve and if you want to compute something in holography knowing an explicit metric seems to be essential. Or is it? For some theories, observables, such as on-shell actions and free energies, are determined solely in terms of topological data, and an explicit metric is not needed. One of the key tools that has recently been used for this programme is equivariant localization, which gives a method of computing integrals on spaces with a symmetry. In this talk I will give a pedestrian introduction to equivariant localization before showing how it can be used to compute the on-shell action of 6d Romans Gauged supergravity. 
 

Mon, 16 Jun 2025
16:30
L4

Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

Anna Korba
(ENSAE Paris)
Abstract

Many applications in machine learning involve data represented as probability distributions. The emergence of such data requires radically novel techniques to design tractable gradient flows on probability distributions over this type of (infinitedimensional) objects. For instance, being able to flow labeled datasets is a core task for applications ranging from domain adaptation to transfer learning or dataset distillation. In this setting, we propose to represent each class by the associated conditional distribution of features, and to model the dataset as a mixture distribution supported on these classes (which are themselves probability distributions), meaning that labeled datasets can be seen as probability distributions over probability distributions. We endow this space with a metric structure from optimal transport, namely the Wasserstein over Wasserstein (WoW) distance, derive a differential structure on this space, and define WoW gradient flows. The latter enables to design dynamics over this space that decrease a given objective functional. We apply our framework to transfer learning and dataset distillation tasks, leveraging our gradient flow construction as well as novel tractable functionals that take the form of Maximum Mean Discrepancies with Sliced-Wasserstein based kernels between probability distributions.

Mon, 16 Jun 2025
16:00
C3

Counting solutions to (some) homogeneous quadratic forms in eight prime variables

Aleksandra Kowalska
(University of Oxford)
Abstract
In 2014, Lilu Zhao counted the solutions to non-degenerate, homogeneous quadratic forms in at least nine prime variables, using the circle method. However, while the suggested formula for the number of solutions is believed to hold for forms in at least five variables, his method seems to break for general forms in less than nine variables.
In 2021, Ben Green solved the problem for forms in eight prime variables (using a very different approach), satisfying a 'genericity' condition. The aim of my project was to solve some forms in eight variables not satisfying this condition.
In the talk, I will describe my findings, which allowed me to count the number of solutions to forms in eight prime variables with off-diagonal rank 3 (i.e., which have an invertible 3x3 submatrix without diagonal entries), which is a subset of non-generic forms.
Mon, 16 Jun 2025

15:30 - 16:30
L5

A unitary three-functor formalism for commutative Von Neumann algebras

Thomas Wasserman
(Oxford University)
Abstract

Six-functor formalisms are ubiquitous in mathematics, and I will start this talk by giving a quick introduction to them. A three-functor formalism is, as the name suggests, (the better) half of a six-functor formalism. I will discuss what it means for such a three-functor formalism to be unitary, and why commutative Von Neumann algebras (and hence, by the Gelfand-Naimark theorem, measure spaces) admit a unitary three-functor formalism that can be viewed as mixing sheaf theory with functional analysis. Based on joint work with André Henriques.

Mon, 16 Jun 2025
15:30
L3

Kinetic Optimal Transport

Prof Jan Maas
(IST Austria)
Abstract

We present a kinetic version of the optimal transport problem for probability measures on phase space. The central object is a second-order discrepancy between probability measures, analogous to the 2-Wasserstein distance, but based on the minimisation of the squared acceleration. We discuss the equivalence of static and dynamical formulations and characterise absolutely continuous curves of measures in terms of reparametrised solutions to the Vlasov continuity equation. This is based on joint work with Giovanni Brigati (ISTA) and Filippo Quattrocchi (ISTA).

Mon, 16 Jun 2025
14:15
L5

BPS polynomials and Welschinger invariants

Pierrick Bousseau
(University of Georgia)
Abstract
For any smooth projective surface $S$, we introduce BPS polynomials — Laurent polynomials in a formal variable $q$ — derived from the higher genus Gromov–Witten theory of the 3-fold $S \times {\mathbb P}^1$. When $S$ is a toric del Pezzo surface, we prove that these polynomials coincide with the Block–Göttsche polynomials defined in terms of tropical curve counts. Beyond the toric case, we conjecture that for surfaces $S_n$ obtained by blowing up ${\mathbb P}^2$ at $n$ general points, the evaluation of BPS polynomials at $q=-1$ yields Welschinger invariants, given by signed counts of real rational curves. We verify a relative version of this conjecture for all the surfaces $S_n$, and prove the main conjecture for n less than or equal to 6. This establishes a surprising link between real and complex curve enumerations, going via higher genus Gromov-Witten theory. Additionally, we propose a conjectural relationship between BPS polynomials and refined Donaldson–Thomas invariants. This is joint work with Hulya Arguz.



 

Mon, 16 Jun 2025

14:00 - 15:00
Lecture Room 3

Machine Learning for Fluid Dynamics: on roads less travelled

Jr Prof Petros Koumoutsakos
(Harvard University, USA)
Abstract

Petros will present recent advances of developing ML algorithms for applications in computational and experimental fluid dynamics. A particular point of this talk is that classical control and optimisation techniques can outperform machine learning algorithms. He will share lessons learned and suggest future directions.

 

Bio: Petros Koumoutsakos is Herbert S. Winokur, Jr. Professor of Computing in Science and Engineering at Harvard University.  He has served as the Chair of Computational Science at ETHZ Zurich (1997-2020) and has held visiting fellow positions at Caltech, the University of Tokyo, MIT and TU Berlin. Petros is elected Fellow of the American Society of Mechanical Engineers (ASME), the American Physical Society (APS), the Society of Industrial and Applied Mathematics (SIAM). He is recipient of the Advanced Investigator Award by the European Research Council and the ACM Gordon Bell prize in Supercomputing. He is elected International Member to the US National Academy of Engineering (NAE). His research interests are on the fundamentals and applications of computing and artificial intelligence to understand, predict and optimize fluid flows in engineering, nanotechnology, and medicine.

 

 

 

Mon, 16 Jun 2025
13:00
L6

An Introduction to the ZX-calculus

Martin Daan van IJcken
Abstract

 

Abstract: This talk introduces the ZX-calculus, a powerful graphical language for reasoning about quantum computations. I will start with an overview of process theories, a general framework for describing how processes act upon different types of information. I then focus on the process theory of quantum circuits, where each function (or gate) is a unitary linear transformation acting upon qubits. The ZX-calculus simplifies the set of available gates in terms of two atomic operations: Z and X spiders, which generalize rotations around the Z and X axes of the Bloch sphere. I demonstrate how to translate quantum circuits into ZX-diagrams and how to simplify ZX diagrams using a set of seven equivalences. Through examples and illustrations, I hope to convey that the ZX-calculus provides an intuitive and powerful tool for reasoning about quantum computations, allowing for the derivation of equivalences between circuits. By the end of the talk listeners should be able to understand equations written in the ZX-calculus and potentially use them in their own work.

Fri, 13 Jun 2025
13:00
L5

The Likelihood Correspondence

Hal Schenck
(Auburn University)
Abstract

An arrangement of hypersurfaces in projective space is strict normal crossing if and only if its Euler discriminant is nonzero. We study the critical loci of all Laurent monomials in the equations of the smooth hypersurfaces. These loci form an irreducible variety in the product of two projective spaces, known in algebraic statistics as the likelihood correspondence and in particle physics as the scattering correspondence. We establish an explicit determinantal representation for the bihomogeneous prime ideal of this variety.

Joint work with T. Kahle, B. Sturmfels, M. Wiesmann

Fri, 13 Jun 2025

12:00 - 13:00
Quillen Room

[Cancelled]

Ittihad Hasib
(University of Warwick)
Abstract

Due to a family emergency, the speaker unfortunately had to cancel this talk.

Fri, 13 Jun 2025

11:00 - 12:00
Lecture Room 3

A Mathematical Perspective on Transformers

Prof Philippe Rigollet
(Massachusetts Institute of Technology, USA)
Abstract

Since their introduction in 2017, Transformers have revolutionized large language models and the broader field of deep learning. Central to this success is the ground-breaking self-attention mechanism. In this presentation, I’ll introduce a mathematical framework that casts this mechanism as a mean-field interacting particle system, revealing a desirable long-time clustering behaviour. This perspective leads to a trove of fascinating questions with unexpected connections to Kuramoto oscillators, sphere packing, Wasserstein gradient flows, and slow dynamics.

 

Bio: Philippe Rigollet is a Distinguished Professor of Mathematics at MIT, where he serves as Chair of the Applied Math Committee and Director of the Statistics and Data Science Center. His research spans multiple dimensions of mathematical data science, including statistics, machine learning, and optimization, with recent emphasis on optimal transport and its applications. See https://math.mit.edu/~rigollet/ for more information.

 

 

This talk is hosted by the AI Reading Group

 

 

 

Fri, 13 Jun 2025

11:00 - 12:00
L4

Cell-bulk compartmental reaction-diffusion systems: symmetry-breaking patterns with equal diffusivities and diffusion-Induced synchrony.

Professor Michael Ward
(Dept of Mathematics University of British Columbia)
Abstract

We investigate pattern formation for a 2D PDE-ODE bulk-cell model, where one or more bulk diffusing species are coupled to nonlinear intracellular
reactions that are confined within a disjoint collection of small compartments. The bulk species are coupled to the spatially segregated
intracellular reactions through Robin conditions across the cell boundaries. For this compartmental-reaction diffusion system, we show that
symmetry-breaking bifurcations leading to stable asymmetric steady-state patterns, as regulated by a membrane binding rate ratio, occur even when
two bulk species have equal bulk diffusivities. This result is in distinct contrast to the usual, and often biologically unrealistic, large
differential diffusivity ratio requirement for Turing pattern formation from a spatially uniform state. Secondly, for the case of one-bulk
diffusing species in R^2, we derive a new memory-dependent ODE integro-differential system that characterizes how intracellular
oscillations in the collection of cells are coupled through the PDE bulk-diffusion field. By using a fast numerical approach relying on the
``sum-of-exponentials'' method to derive a time-marching scheme for this nonlocal system, diffusion induced synchrony is examined for various
spatial arrangements of cells using the Kuramoto order parameter. This theoretical modeling framework, relevant when spatially localized nonlinear
oscillators are coupled through a PDE diffusion field, is distinct from the traditional Kuramoto paradigm for studying oscillator synchronization on
networks or graphs. (Joint work with Merlin Pelz, UBC and UMinnesota).

Thu, 12 Jun 2025
17:00
L3

Hrushovski constructions in ordered fields

Yilong Zhang
(Universitat Bonn)
Abstract
Hrushovski constructions are a variant of amalgamation methods. They were invented to construct new examples of strongly minimal theories. The method was later adapted to expansions of fields, including colored fields and powered fields. In this talk, I will present my attempt to apply Hrushovski constructions to ordered fields. I will construct an expansion of RCF by a dense multiplicative subgroup (green points). Hrushovski constructions induce a back-and-forth system, enabling us to study the dp-rank and the open core of this structure. I will also introduce my recent progress on powered fields, an expansion of RCF by "power functions" on the unit circle, and my plan to axiomatize expansions of the real field using Hrushovski constructions.
Thu, 12 Jun 2025
16:00
L5

First- and Half-order Schemes for Regime Switching Stochastic Differential Equation with Non-differentiable Drift Coefficient

Chaman Kumar
(Indian Institute of Technology)
Abstract

An explicit first-order drift-randomized Milstein scheme for a regime switching stochastic differential equation is proposed and its bi-stability and rate of strong convergence are investigated for a non-differentiable drift coefficient. Precisely, drift is Lipschitz continuous while diffusion along with its derivative is Lipschitz continuous. Further, we explore the significance of evaluating Brownian trajectories at every switching time of the underlying Markov chain in achieving the convergence rate 1 of the proposed scheme. In this context, possible variants of the scheme, namely modified randomized and reduced randomized schemes, are considered and their convergence rates are shown to be 1/2. Numerical experiments are performed to illustrate the convergence rates of these schemes along with their corresponding non-randomized versions. Further, it is illustrated that the half-order non-randomized reduced and modified schemes outperform the classical Euler scheme.

Thu, 12 Jun 2025
16:00
Lecture Room 4

The exceptional zero conjecture for GL(3)

Chris Williams
(University of Nottingham)
Abstract

The BSD conjecture predicts that a rational elliptic curve $E$ has infinitely many points if and only if its $L$-function vanishes at $s=1$.

There are $p$-adic versions of similar phenomena. If $E$ is $p$-ordinary, there is, for example, a $p$-adic analytic analogue $L_p(E,s)$ of the $L$-function, and if $E$ has good reduction, then it has infinitely many rational points iff $L_p(E,1) = 0$. However if $E$ has split multiplicative reduction at $p$ - that is, if $E/\mathbf{Q}_p$ admits a Tate uniformisation $\mathbf{C}_p^{\times}/q^{\mathbf{Z}}$ - then $L_p(E,1) = 0$ for trivial reasons, regardless of $L(E,1)$; it has an 'exceptional zero'. Mazur--Tate--Teitelbaum's exceptional zero conjecture, proved by Greenberg--Stevens in '93, states that in this case the first derivative $L_p'(E,1)$ is much more interesting: it satisfies $L_p'(E,1) = \mathrm{log}(q)/\mathrm{ord}(q) \times L(E,1)/(\mathrm{period})$. In particular, it should vanish iff $L(E,1) = 0$ iff $E(\mathbf{Q})$ is infinite; and even better, it has a beautiful and surprising connection to the Tate period $q$, via the 'L-invariant' $\mathrm{log}(q)/\mathrm{ord}(q)$.

In this talk I will discuss exceptional zero phenomena and L-invariants, and a generalisation of the exceptional zero conjecture to automorphic representations of GL(3). This is joint work in progress with Daniel Barrera and Andrew Graham.

Thu, 12 Jun 2025

14:30 - 16:00
C1

"Eine grössere Harmonie zwischen Begriff und Bild": Eduard Study on mathematical freedom, language, and objectivity

Nicolas Michel
(Isaac Newton Institute, University of Cambridge & Open University)
Abstract
German mathematician Eduard Study (1862-1930) was an outspoken critic of several emerging trends in modern mathematics at the turn of the century. Intuitionism, he argued, was in the process of eliminating the very notion of truth at the core of any serious scientific endeavour, whereas axiom-obsessed formalists engaged in a mere game of symbols, thereby losing sight of what really grants meaning and value to mathematical concepts. In rejecting both approaches, Study sought to maintain that mathematics was a science formed of freely-created concepts yet still possessed a specific form of objectivity, whose exploration crucially relied on the careful construction of symbolic languages.
 
To disentangle these claims, this talk will delve into Study's unpublished, philosophical essay on the foundations of analysis, and compare it to the mathematical practice espoused in his 1903 Geometrie der Dynamen, a landmark volume in the history of kinematics.
Thu, 12 Jun 2025

14:00 - 15:00
Lecture Room 3

Finite volumes for a generalized Poisson-Nernst-Planck system with cross-diffusion and size exclusion

Clément Cancès
(INRIA LILLE)
Abstract

We propose and analyse two structure preserving finite volume schemes to approximate the solutions to a cross-diffusion system with self-consistent electric interactions introduced by Burger, Schlake & Wolfram (2012). This system has been derived thanks to probabilistic arguments and admits a thermodynamically motivated Lyapunov functional that is preserved by suitable two-point flux finite volume approximations. This allows to carry out the mathematical analysis of two schemes to be compared.

This is joint work with Maxime Herda and Annamaria Massimini.

 

 

Thu, 12 Jun 2025
12:00
C6

Recent progress on the structure of metric currents.

Emanuele Caputo
(University of Warwick)
Abstract

The goal of the talk is to give an overview of the metric theory of currents by Ambrosio-Kirchheim, together with some recent progress in the setting of Banach spaces. Metric currents are a generalization to the metric setting of classical currents. Classical currents are the natural generalization of oriented submanifolds, as distributions play the same role for functions. We present a structure result for 1-metric currents as superposition of 1-rectifiable sets in Banach spaces, which generalizes a previous result by Schioppa. This is based on an approximation result of metric 1-currents with normal 1-currents. This is joint work with D. Bate, J. Takáč, P. Valentine, and P. Wald (Warwick).

Thu, 12 Jun 2025

12:00 - 12:30
L4

Cubic-quartic regularization models for solving polynomial subproblems in third-order tensor methods

Kate Zhu
(Mathematical Institute (University of Oxford))
Abstract

High-order tensor methods for solving both convex and nonconvex optimization problems have recently generated significant research interest, due in part to the natural way in which higher derivatives can be incorporated into adaptive regularization frameworks, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, to find the next solution approximation, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of the change in the iterates. Developing efficient techniques for the solution of such subproblems is currently, an ongoing topic of research,  and this talk addresses this question for the case of the third-order tensor subproblem. In particular, we propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with  Quartic Regularisation, by sequentially minimizing a sequence of local quadratic models that also incorporate both simple cubic and quartic terms.

The role of the cubic term is to crudely approximate local tensor information, while the quartic one provides model regularization and controls progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $O(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases.  We propose practical CQR variants that judiciously use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

Thu, 12 Jun 2025

12:00 - 13:00
L3

Microfluidic model of haemodynamics in complex media

Anne Juel
(University of Manchester)
Further Information

Short Bio
Anna Juel is a physicist whose research explores the complex dynamics of material systems, particularly in two-phase flows and wetting phenomena. Her group focuses on microfluidics, fluid-structure interactions, and complex fluid flows, with applications ranging from chocolate moulding to airway reopening and flexible displays. Based at the Manchester Centre for Nonlinear Dynamics, her experimental work often uncovers surprising behaviour, driving new insights through combined experimentation and modelling.

Abstract
The flow of red blood cells (RBCs) in heterogeneous biological porous tissues such as the human placenta, remains poorly understood despite the essential role the microvasculature plays in maintaining overall health and functionality of tissues, blood flow and transport mechanisms. This is in great part because the usual description of blood as a simple fluid breaks down when the size of RBCs is similar to that of the vessel. In this study, we use a bespoke suspension of ultra-soft microcapsules with a poroelastic membrane, which have been previously shown to mimic the motion and large deformations of RBCs in simple conduits [1], in order to explore soft suspension flows in planar porous media. Our planar porous devices are Hele-Shaw channels, where the capsules are slightly confined within the channel depth, and in which we increase confinement by adding regular or disordered arrays of pillars. We perform experiments that relate the global resistance of the suspension flow through the porous media to the local distributions of capsule concentration and velocity as a function of volume fraction, capillary number Ca, the ratio of viscous to elastic forces, and geometry. We find that the flow patterns in Hele-Shaw channels and ordered porous media differ significantly from those in disordered porous media, where the presence of capsules promotes preferential paths and supports anomalous capsule dispersion. In contrast, the flows in ordered geometries develop intriguing shear-banding patterns as the volume fraction increases. Despite the complex microscopic dynamics of the suspension flow, we observe the emergence of similar scaling laws for the global flow resistance in both regular and disordered porous media as a function of Ca. We find that the scaling exponent decreases with increasing volume fraction because of cooperative capsule mechanisms, which yield relative stiffening of the system for increasing Ca.
 
[1] Chen et al. Soft Matter 19, 5249- 5261.
 
Thu, 12 Jun 2025

11:00 - 12:00
C5

30 years since the Galois characterisation of ℚₚ — Part I

Leo Gitin
(University of Oxford)
Abstract

The absolute Galois group of ℚₚ determines its field structure: a field K is p-adically closed if and only if its absolute Galois group is isomorphic to that of ℚₚ. This Galois-theoretic characterisation was proved by Koenigsmann in 1995, building on previous work by Arason, Elman, Jacob, Ware, and Pop. Similar results were obtained by Efrat and further developed in his 2006 book.

Our project aims to provide an optimal proof of this characterisation, incorporating improvements and new developments. These include a revised proof strategy; Efrat's construction of valuations via multiplicative stratification; the Galois characterisation of henselianity; systematic use of the standard decomposition; and the function field analogy of Krasner-Kazhdan-Deligne type. Moreover, we replace arguments that use Galois cohomology with elementary ones.

In this talk, I will focus on two key components of the proof: the construction of valuations from rigid elements, and the role of the function field analogy as developed via the non-standard methods of Jahnke-Kartas.

This is joint work with Jochen Koenigsmann and Benedikt Stock.

Wed, 11 Jun 2025
16:00
L5

Finiteness properties of some automorphism groups of right-angled Artin groups

Gabriel Corrigan
(University of Glasgow)
Abstract

Right-angled Artin groups (RAAGs) can be viewed as a generalisation of free groups. To what extent, then, do the techniques used to study automorphisms of free groups generalise to the setting of RAAGs? One significant advance in this direction is the construction of 'untwisted Outer space' for RAAGs, a generalisation of the influential Culler-Vogtmann Outer space for free groups. A consequence of this construction is an upper bound on the virtual cohomological dimension of the 'untwisted subgroup' of outer automorphisms of a RAAG. However, this bound is sometimes larger than one expects; I present work showing that, in fact, it can be arbitrarily so, by forming a new complex as a deformation retraction of the untwisted Outer space. In a different direction, another subgroup of interest is that consisting of symmetric automorphisms. Generalising work in the free groups setting from 1989, I present an Outer space for the symmetric automorphism group of a RAAG. A consequence of the proof is a strong finiteness property for many other subgroups of the outer automorphism group.

Wed, 11 Jun 2025
11:00
L5

Conditioning Diffusions Using Malliavin Calculus

Dr Jakiw Pidstrigach
(Department of Statistics, University of Oxford)
Abstract

In stochastic optimal control and conditional generative modelling, a central computational task is to modify a reference diffusion process to maximise a given terminal-time reward. Most existing methods require this reward to be differentiable, using gradients to steer the diffusion towards favourable outcomes. However, in many practical settings, like diffusion bridges, the reward is singular, taking an infinite value if the target is hit and zero otherwise. We introduce a novel framework, based on Malliavin calculus and path-space integration by parts, that enables the development of methods robust to such singular rewards. This allows our approach to handle a broad range of applications, including classification, diffusion bridges, and conditioning without the need for artificial observational noise. We demonstrate that our approach offers stable and reliable training, outperforming existing techniques. 

Tue, 10 Jun 2025
16:00

Random multiplicative functions and their distribution

Seth Hardy
(University of Warwick)
Abstract

Understanding the size of the partial sums of the Möbius function is one of the most fundamental problems in analytic number theory. This motivated the 1944 paper of Wintner, where he introduced the concept of a random multiplicative function: a probabilistic model for the Möbius function. In recent years, it has been uncovered that there is an intimate connection between random multiplicative functions and the theory of Gaussian Multiplicative Chaos, an area of probability theory introduced by Kahane in the 1980's. We will survey selected results and discuss recent research on the distribution of partial sums of random multiplicative functions when restricted to integers with a large prime factor.

Tue, 10 Jun 2025
15:30
L4

Cohomological Donaldson—Thomas invariants for 3-manifolds

Pavel Safronov
(Edinburgh University)
Abstract
Cohomological Donaldson—Thomas theory associates cohomology groups to various moduli spaces in algebraic geometry, such as the moduli space of coherent sheaves on a Calabi—Yau 3-fold. In this talk I will explain some recent results on cohomological DT invariants in the setting of a real 3-manifold $M$. In terms of string theory it corresponds to counting D3 branes in the compactification of a type IIB string theory on $T^* M$. This setting of DT theory is particularly interesting due to its connections to topology (via skein modules), geometric representation theory (geometric Langlands program), and mathematical physics (analytic continuation of Chern—Simons theory). This talk is based on papers joint with Gunningham, Kinjo, Naef, and Park.



 

Tue, 10 Jun 2025
15:00
L6

Random quotients of hierarchically hyperbolic groups

Carolyn Abbott
Abstract

Quotients of hyperbolic groups (groups that act geometrically on a hyperbolic space) and their generalizations have long been a powerful tool for proving strong algebraic results. In this talk, I will describe the geometry of random quotients of certain of groups, that is, a quotient by a subgroup normally generated by k independent random walks.  I will focus on the class of hierarchically hyperbolic groups (HHGs), a generalization of hyperbolic groups that includes hyperbolic groups, mapping class groups, most CAT(0) cubical groups including right-angled Artin and Coxeter groups, many 3–manifold groups, and various combinations of such groups.  In this context, I will explain why a random quotient of an HHG that does not split as a direct product is again an HHG, definitively showing that the class of HHGs is quite broad.  I will also describe how the result can also be applied to understand the geometry of random quotients of hyperbolic and relatively hyperbolic groups. This is joint work with Giorgio Mangioni, Thomas Ng, and Alexander Rasmussen.

Tue, 10 Jun 2025
14:00
C6

Nearly G2-structures and G2-Laplacian co-flows.

Jakob Stein
(UNICAMP )
Abstract

In this talk, we discuss nearly G2 structures, which define positive Einstein metrics, and are, up to scale, critical points of a geometric flow called (modified) Laplacian co-flow. We will discuss a recent joint work with Jason Lotay showing that many of these nearly G2 critical points are unstable for the flow. 

Tue, 10 Jun 2025

14:00 - 15:00
L4

SDP, MaxCut, Discrepancy, and the Log-Rank Conjecture

Benny Sudakov
(ETH Zurich)
Abstract

Semidefinite programming (SDP) is a powerful tool in the design of approximation algorithms. After providing a gentle introduction to the basics of this method, I will explore a different facet of SDP and show how it can be used to derive short and elegant proofs of both classical and new estimates related to the MaxCut problem and discrepancy theory in graphs and matrices.

Building on this, I will demonstrate how these results lead to an improved upper bound on the celebrated log-rank conjecture in communication complexity.

Tue, 10 Jun 2025
13:00
L1

A new construction of c=1 Virasoro blocks

Andy Neitzke
(Yale)
Abstract

I will describe a new method for constructing conformal blocks for the Virasoro vertex algebra with central charge c=1, by "nonabelianization", relating them to conformal blocks for the Heisenberg algebra on a branched double cover. The construction is joint work with Qianyu Hao. Special cases give rise to formulas for tau-functions and solutions of integrable systems of PDE, such as Painleve I and its higher analogues. The talk will be reasonably self-contained (in particular I will explain what a conformal block is).

Mon, 09 Jun 2025
16:30
L4

Annuli and strip : the effect on the vortex patterns for the Ginzburg-Landau energy

Amandine Aftalion
(CNRS; laboratoire de mathématiques d'Orsay, Univ Paris-Saclay)
Abstract

We are going to study the Ginzburg-Landau energy for two specific geometries, related to the very experiments on fermionic condensates: annuli and strips 

The specific geometry of a strip provides connections between solitons and vortices, called solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. Therefore, they are very different from classical vortices which have an algebraic decay at infinity. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. This is motivated by recent experiments on the instability of solitons by imposing a phase shift in an elongated condensate for bosonic or fermionic atoms.

For annuli, we prescribe a very large degree on the outer boundary and find that either there is a transition from a giant vortex to vortices also in the bulk but tending to the outer boundary.

This is joint work with Ph. Gravejat and E.Sandier for solitonice vortices and Remy Rodiac for annuli.
 

Mon, 09 Jun 2025
16:00
L6

TBC

Alexandra Kowalska
(University of Oxford)
Abstract

TBC

Mon, 09 Jun 2025
15:30
L5

Planar loops and the homology of Temperley-Lieb algebras

Guy Boyde
(Universiteit Utrecht)
Abstract

Temperley-Lieb algebras are certain finite-dimensional algebras coming originally from statistical physics and knot theory. Around 2019, they became one of the first examples of homological stability for algebras (homology is here taken to be certain Tor-groups), when Boyd and Hepworth showed that in low dimensions the homology vanishes. We're now able to give complete calculations of their homology, which has a surprisingly rich structure (and in particular is very far from vanishing). This is joint work in progress with Rachael Boyd, Oscar Randal-Williams, and Robin Sroka. Prerequisites will be minimal: it will be enough to know what Tor is.

Mon, 09 Jun 2025
15:30
L3

Well-Posedness and Regularity of SDEs in the Plane with Non-Smooth Drift

Prof. Olivier Menoukeu Pamen
(University of Liverpool)
Abstract

Keywords: SDE on the plane, Brownian sheet, path by path uniqueness, space time local time integral, Malliavin calculus

 

In this talk, we discuss the existence, uniqueness, and regularisation by noise for stochastic differential equations (SDEs) on the plane. These equations can also be interpreted as quasi-linear hyperbolic stochastic partial differential equations (HSPDEs). More specifically, we address path-by-path uniqueness for multidimensional SDEs on the plane, under the assumption that the drift coefficient satisfies a spatial linear growth condition and is componentwise non-decreasing. In the case where the drift is only measurable and uniformly bounded, we show that the corresponding additive HSPDE on the plane admits a unique strong solution that is Malliavin differentiable. Our approach combines tools from Malliavin calculus with variational techniques originally introduced by Davie (2007), which we non-trivially extend to the setting of SDEs on the plane.


This talk is based on a joint works with A. M. Bogso, M. Dieye and F. Proske.

Mon, 09 Jun 2025
14:15
L5

$3$-$(\alpha,\delta)$-Sasaki manifolds and strongly positive curvature

Ilka Agricola
(Philipps-Universität Marburg)
Abstract
$3$-$(\alpha,\delta)$-Sasaki manifolds are a natural generalisation of $3$-Sasaki manifolds, which in dimension $7$ are intricately related to $G_2$ geometry. We show how these are closely related to various types of quaternionic Kähler orbifolds via connections with skew-torsion and an interesting canonical submersion. Making use of this relation we discuss curvature operators and show that in dimension 7 many such manifolds have strongly positive curvature, a notion originally introduced by Thorpe. 

 
Fri, 06 Jun 2025
16:00
C3

Sharp mixed moment bounds for zeta times a Dirichlet L-function

Markus Valås Hagen
(NTNU)
Abstract

A famous theorem of Selberg asserts that $\log|\zeta(\tfrac12+it)|$ is approximately a normal distribution with mean $0$ and variance $\tfrac12\log\log T$, when we sample $t\in [T,2T]$ uniformly. This extends in a natural way to a plethora of other $L$-functions, one of them being Dirichlet $L$-functions $L(s,\chi)$ with $\chi$ a primitive Dirichlet character. Viewing $\zeta(\tfrac12+it)$ and $L(\tfrac12+it,\chi)$ as normal variables, we expect indepedence between them, meaning that for fixed $V_1,V_2 \in \mathbb{R}$: $$\textrm{meas}_{t \in [T,2T]} \left\{\frac{\log|\zeta(\tfrac12+it)|}{\sqrt{\tfrac12 \log\log T}}\geq V_1 \text{   and   } \frac{\log|L(\tfrac12+it,\chi)|}{\sqrt{\tfrac12 \log\log T}}\geq V_2\right\} \sim \prod_{j=1}^2 \int_{V_j}^\infty e^{-x^2/2} \frac{\textrm{d}x}{\sqrt{2\pi}}.$$
    When $V_j\asymp \sqrt{\log\log T}$, i.e. we are considering values of order of the variance, the asymptotic above breaks down, but the Gaussian behaviour is still believed to hold to order. For such $V_j$ the behaviour of the joint distribution is decided by the moments $$I_{k,\ell}(T)=\int_T^{2T} |\zeta(\tfrac12+it)|^{2k}|L(\tfrac12+it,\chi)|^{2\ell}\, dt.$$ We establish that $I_{k,\ell}(T)\asymp T(\log T)^{k^2+\ell^2}$ for $0<k,\ell \leq 1$. The lower bound holds for all $k,\ell >0$. This allows us to decide the order of the joint distribution when $V_j =\alpha_j\sqrt{\log\log T}$ for $\alpha_j \in (0,\sqrt{2}]$. Other corollaries include sharp moment bounds for Dedekind zeta functions of quadratic number fields, and Hurwitz zeta functions with rational parameter. 
    

Fri, 06 Jun 2025
13:00
L5

Topologically good cover from gradient descent

Uzu Lim
(Queen Mary University London)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

The cover of a dataset is a fundamental concept in computational geometry and topology. In TDA (topological data analysis), it is especially used in computing persistent homology and data visualisation using Mapper. However only rudimentary methods have been used to compute a cover. In this talk, we formulate the cover computation problem as a general optimisation problem with a well-defined loss function, and use gradient descent to solve it. The resulting algorithm, ShapeDiscover, substantially improves quality of topological inference and data visualisation. We also show some preliminary applications in scRNA-seq transcriptomics and the topology of grid cells in the rats' brain. This is a joint work with Luis Scoccola and Heather Harrington.

Fri, 06 Jun 2025

12:00 - 13:00
Quillen Room

Block decompositions for p-adic groups

Constantinos Papachristoforou
(University of Sheffield)
Abstract
Driven by the Langlands program, the representation theory of reductive p-adic groups has been significantly developed during the last few decades.
I will give an overview on some aspects of the theory, with particular emphasis on decomposition of categories of smooth representations. I will also discuss passing from complex representations to other coefficient rings.
Fri, 06 Jun 2025

11:00 - 12:00
L4

Mathematical modeling of some aspects of Age-related Macular Degeneration (AMD)

Dr Luca Alasio
(INRIA Paris)
Abstract

Our visual perception of the world heavily relies on sophisticated and delicate biological mechanisms, and any disruption to these mechanisms negatively impacts our lives. Age-related macular degeneration (AMD) affects the central field of vision and has become increasingly common in our society, thereby generating a surge of academic and clinical interest. I will present some recent developments in the mathematical modeling of the retinal pigment epithelium (RPE) in the retina in the context of AMD; the RPE cell layer supports photoreceptor survival by providing nutrients and participating in the visual cycle and “cellular maintenance". Our objectives include modeling the aging and degeneration of the RPE with a mechanistic approach, as well as predicting the progression of atrophic lesions in the epithelial tissue. This is a joint work with the research team of Prof. M. Paques at Hôpital National des Quinze-Vingts.


 

Thu, 05 Jun 2025
17:00
L3

Globally valued fields, adelic curves and Siu inequality

Antoine Sedillot
(Universität Regensburg)
Abstract

In this talk, I will introduce the frameworks of globally valued fields (Ben Yaacov-Hrushovski) and adelic curves (Chen-Moriwaki). Both of these frameworks aim at understanding the arithmetic of fields sharing common features with global fields. A lot of examples fit in this scope (e.g. global fields, finitely generated extension of the prime fields, fields of meromorphic functions) and we will try to describe some of them.

Although globally valued fields and adelic curves came from different motivations and might seem quite different, they are related (and even essentially equivalent). This relation opens the door for new methods in the study of global arithmetic. As an application, we will sketch the proof of an arithmetic analogue of Siu inequality in algebraic geometry (a fundamental tool to detect the existence of global sections of line bundles in birational geometry). This is a joint work with Michał Szachniewicz.

Thu, 05 Jun 2025
16:00
Lecture Room 4

Refined conjectures of ‘Birch—Swinnerton-Dyer type’ and the theory of Euler systems

Dominik Bullach
(University College London)
Abstract

In the 1980s, Mazur and Tate proposed refinements of the Birch–Swinnerton-Dyer conjecture that also capture congruences between twists of Hasse–Weil L-series by Dirichlet characters. In this talk, I will report on new results towards these refined conjectures, obtained in joint work with Matthew Honnor. I will also outline how the results fit into a more general approach to refined conjectures on special values of L-series via an enhanced theory of Euler systems. This final part will touch upon joint work with David Burns.

Thu, 05 Jun 2025
14:00
Lecture Room 3

Solving sparse linear systems using quantum computing algorithms

Leigh Lapworth
(Rolls-Royce)
Abstract

The currently available quantum computers fall into the NISQ (Noisy Intermediate Scale Quantum) regime. These enable variational algorithms with a relatively small number of free parameters. We are now entering the FTQC (Fault Tolerant Quantum Computer)  regime where gate fidelities are high enough that error-correction schemes are effective. The UK Quantum Missions include the target for a FTQC device that can perform a million operations by 2028, and a trillion operations by 2035.

 

This talk will present the outcomes from assessments of  two quantum linear equation solvers for FTQCs– the Harrow–Hassidim–Lloyd (HHL) and the Quantum Singular Value Transform (QSVT) algorithms. These have used sample matrices from a Computational Fluid Dynamics (CFD) testcase. The quantum solvers have also been embedded with an outer non-linear solver to judge their impact on convergence. The analysis uses circuit emulation and is used to judge the FTQC requirements to deliver quantum utility.

Thu, 05 Jun 2025
13:30
L5

Seiberg-Witten theory

Harshal Kulkarni
Abstract
Seiberg-Witten theory is a powerful framework for understanding the exact non-perturbative dynamics of 4d $\mathcal{N} = 2$ supersymmetric QFTs. On the Coulomb branch of the moduli space, the low-energy physics is described by an abelian gauge theory with a holomorphic structure constrained by supersymmetry and duality. In this talk, I will explain the emergence of $PSL(2,\mathbb{Z})$ invariance in this effective field theory and how this naturally leads to a fibration of elliptic curves over the Coulomb branch. Focusing on the simplest case of $\mathcal{N} = 2$ SU(2) gauge theory without flavors, I will discuss the singularity structure of the Coulomb branch and the physical significance of these special points. I will conclude by briefly commenting on the central role that the singular structure of the moduli space plays in the classification of 4d $\mathcal{N}=2$ SCFTs.
 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.