Past Forthcoming Seminars

3 February 2005
14:00
Professor Richard Brent
Abstract

We consider the problem of computing ratings using the results of games (such as chess) played between a set of n players, and show how this problem can be reduced to computing the positive eigenvectors corresponding to the dominant eigenvalues of certain n by n matrices. There is a close connection with the stationary probability distributions of certain Markov chains. In practice, if n is large, then the matrices involved will be sparse, and the power method may be used to solve the eigenvalue problems efficiently.

  • Computational Mathematics and Applications Seminar
31 January 2005
15:45
Abstract
It is well-known that the only space-time scaling limits of Galton-Watson processes are continuous-state branching processes. Their genealogical structure is most explicitly expressed by discrete trees and R-trees, respectively. Weak limit theorems have been recently established for some of these random trees. We study here a Markovian forest growth procedure that allows to construct the genealogical forest of any continuous-state branching process with immigration as an a.s. limit of Galton-Watson forests with edge lengths. Furthermore, we are naturally led to continuous forests with edge lengths. Another strength of our method is that it yields results in the general supercritical case that was excluded in most of the previous literature.
  • Stochastic Analysis Seminar

Pages