Wednesday, 28 January 2015

Oxford named a key founder of Alan Turing Institute

Oxford University will play a key role in the creation and the activities of the new Alan Turing Institute. The Institute will build on the UK's existing academic strengths and help position the country as a world leader in the analysis and application of big data and algorithm research. Its headquarters will be based at the British Library in London.

Oxford is one of the five universities selected to lead the Alan Turing Institute, Rt Hon Dr Vince Cable, Secretary of State for Business, Innovation and Skills, announced today.

Vince Cable said: "Alan Turing's genius played a pivotal role in cracking the codes that helped us win the Second World War. It is therefore only right that our country's top universities are chosen to lead this new institute named in his honour. Headed by the universities of Cambridge, Edinburgh, Oxford, Warwick and UCL, the Alan Turing Institute will attract the best data scientists and mathematicians from the UK and across the globe to break new boundaries in how we use big data in a fast moving, competitive world."

The delivery of the Institute is being coordinated by the Engineering and Physical Sciences Research Council (EPSRC) which invests in research and postgraduate training across the UK. The Institute is being funded over five years with £42 million from the UK government. The selected university partners will contribute further funding. In addition, the Institute will seek to partner with other business and government bodies.

Researchers across Oxford University are already conducting world-class research in data science and analytics, as evidenced by the results of the recent Research Excellence Framework. Oxford's involvement in the Institute will be led by five departments: The Mathematical Institute, Department of Computer Science, Department of Statistics, Department of Engineering Science, and the Oxford Internet Institute.

The new Institute will tap into world-leading strengths and achievements across these scientific disciplines. Examples include the Mathematics of evolving networks. Research from Oxford is now routinely applied by digital marketing companies such as Bloom Media in Leeds to analyse the issue-based conversations taking place on Twitter, in real time. This has led to more responsive marking and to novel crowd-sourced intelligence services. Further examples of work in Oxford and more on the Institute can be found here.


Wednesday, 28 January 2015

James Maynard awarded a Clay Research Fellowship

James Maynard has been awarded a Clay Research Fellowship.  James obtained his doctorate at Oxford in 2013 under the supervision of Roger Heath-Brown and is currently a Fellow by Examination at Magdalen College, Oxford. James is primarily interested in classical number theory, in particular the distribution of prime numbers. His research focuses on using tools from analytic number theory, particularly sieve methods, to study the primes.

The Clay Mathematics Institute (CMI) is a privately funded operating foundation dedicated to increasing and disseminating mathematical knowledge. The CMI supports the work of leading researchers at various stages of their careers and organises conferences, workshops, and an annual summer school. Contemporary breakthroughs are recognized by its annual Research Award.

Tuesday, 27 January 2015

New PROMYS Europe Programme for European Students at Oxford University

We are delighted to annouce that PROMYS Europe will take place in Oxford in July and August of this year. Building on the hugely successful PROMYS programmes in the USA,  PROMYS Europe is a challenging programme designed to encourage mathematically ambitious secondary school students to explore the creative world of mathematics. PROMYS is about asking and answering challenging questions, hard work and experiencing the sheer pleasure and beauty of mathematics.

Applications must be in by 1 April (yes seriously). Full details here.



Thursday, 18 December 2014

Zombie avoidance as a model for disease control - BBC interview


So what should you do if the dead should begin to rise? Dr Thomas Woolley talks to the BBC about avoidance strategies based on mathematical modelling, strategies that can be applied to understanding how infections such as swine flu, HIV and Ebola spread, not least because of the role of media reporting. The item is 3 hours and 17 minutes in to the programme. Thomas also spoke to American TV in Sacramento.


Thursday, 18 December 2014

Oxford Mathematical Sciences ranked first in REF

Our Mathematical Sciences submission to the 2014 Research Excellence Framework, covering research from the Mathematical Institute and the Department of Statistics, has been ranked overall best in the UK. The outcomes, released today, gave Oxford Mathematical Sciences the top ranking for research publications and for the impact of our research outside academia, and the equal top ranking for our research environment.

This outstanding result reflects the extraordinary quality of our faculty and research fellows, as well as the breadth, depth and impact of our core and interdisciplinary research, all underpinned by the  University of Oxford's investment in Mathematical Sciences in the last decade.

Tuesday, 16 December 2014

Stiffening solids by filling them with holes?

Intuition tells us that when you make holes in a solid, it makes the solid softer. As an extreme example, think of a cellulose sponge, which is made from a material that is essentially wood. While you can only bend, stretch or compress a piece of wood with difficulty, you can easily deform a sponge, because it is highly porous. This intuition agrees with classical mechanics theory. So Rob Style from Oxford Mathematics and colleagues were surprised to find that this doesn't work for soft materials. Taking soft rubber-like solids and filling them with lots of microscopic holes, they found that the more holes, the stiffer the solid became. In fact, mathematical modelling shows that this is controlled by similar physics to that which ensures that small bubbles always stay spherical.

The results are important as they suggest that soft composites (like rubbers or gels) can have lots of new, unexpected properties. For example, if you have a soft, expensive solid, you can save material and weight by filling it with micropores without the usual loss of strength or stiffness. Cells in the body can potentially use this effect to change the large-scale properties of biological tissue like cartilage or skin. The research also demonstrates that you can use this effect to cloak small objects elastically in soft materials so that you can't feel their presence by deforming the soft material - a task which has been considered almost impossible to achieve using simple materials.


Monday, 8 December 2014

A 'Penrosian' snowflake for Christmas

What do you want on the front of your Christmas cards? It might seem an idle question, but many companies (and even people) give it serious thought. But surely not mathematicians?  

Well maybe not, but mathematics and mathematicians are very versatile. You could say they are in everything we do. Have a look at our season's greetings e-card, courtesy of Roger Penrose's P1 Tiling and Willam Joseph's design.

Let it snow.


Thursday, 4 December 2014

The History of Mathematics in 300 Stamps - Public Lecture online


Robin Wilson's entire history of mathematics in one hour, as illustrated by around 300 postage stamps featuring mathematics and mathematicians from across the world.

From Euclid to Euler, from Pythagoras to Poincaré, and from Fibonacci to the Fields Medals, all are featured in attractive, charming and sometimes bizarre stamps.


Tuesday, 25 November 2014

What Maths Really Does - Public Lecture online

How has mathematics emerged over recent decades as the engine behind 21st century science? Professor Alain Goriely, Statutory Professor of Mathematical Modelling in Oxford, explains how mathematics provides the framework and models from which physicists, chemists, biologists, medics, engineers and economists build an understanding of our world and construct the tools to improve our lives.


Tuesday, 25 November 2014

Roger Penrose - Forbidden Crystal Symmetry

In this lecture Sir Roger Penrose describes how crystalline symmetries are necessarily 2-fold, 3-fold, 4-fold, or 6-fold. Yet, in the 1970s, 5-fold, 8-fold, 10-fold and 12-fold, ‘almost’ crystalline patterns were found, often beautiful to behold.

These structures have influenced mathematicians and architects alike, notably in the new Mathematical Institute Building where Roger’s own unique non-repeating pattern adorns the entrance.