Homological dimension of soluble groups and some new complement and supplement theorems.

15 January 2013
17:00
Peter Kropholler
Abstract

The homological dimension of a group can be computed over any coefficient ring $K$.
It has long been known that if a soluble group has finite homological dimension over $K$
then it has finite Hirsch length and the Hirsch length is an upper bound for the homological
dimension. We conjecture that equality holds: i.e. the homological dimension over $K$ is
equal to the Hirsch length whenever the former is finite. At first glance this conjecture looks
innocent enough. The conjecture is known when $K$ is taken to be the integers or the field
of rational numbers. But there is a gap in the literature regarding finite field coefficients.
We'll take a look at some of the history of this problem and then show how some new near complement
and near supplement theorems for minimax groups can be used to establish the conjecture
in special cases. I will conclude by speculating what may be required to solve the conjecture outright.